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Abstract—Edge computing has emerged as a solution to
address existing limitations of cloud computing for bandwidth-
heavy and time-sensitive applications, by moving (some) compu-
tations from bandwidth saturated Cloud infrastructures closer
to client devices, where data is effectively produced and con-
sumed. However, existing materializations of the edge computing
paradigm take limited advantage of computational and storage
power that exists in the edge and between client devices and
the cloud. Most of these leverage static hierarchical topologies
(e.g., Fog Computing) to pre-process data before sending it to the
Cloud, which limits the advantages that can be extracted from
the edge computing paradigm. In the past, peer-to-peer systems
have sought to tackle the challenges of increasing scalability
and availability for very large systems, with a large number of
solutions being proposed namely, distributed overlay networks
for resource management. In this paper, we argue that the clever
adaptation of peer-to-peer solutions can enable novel applications
to fully exploit the potential of the edge. In particular, we
study the viability of taking advantage of specialized overlay
networks in edge environments to enable the management of a
large number of computational resources. Contrary to previous
proposals, that assume the environment to be composed of mostly
homogeneous devices, our proposal embraces existing heterogene-
ity and exploits the location of computational resources to devise
a (partially) self-organizing overlay network that can be exploited
both to provide membership information to applications, but
also do efficiently disseminate management information across
edge devices. We have conducted an experimental evaluation
using container-based emulation in an heterogeneous network
composed by 100 devices, with results showing that our protocol
is able to maximize the bandwidth usage of the system, allowing
more data to flow throughout the network, while retaining high
robustness to failures.

I. INTRODUCTION

Today’s cloud-based applications are subjected to ever-
growing volumes of data produced by an increasing number
of clients (either user or IoT devices), which require fast,
available, and reliable responses [1]. Unfortunately, this trend
will induce a prohibitively high load on network infrastructures
that connects clients to cloud data centers, whose available
bandwidth is not increasing at the same rate as the load
induced on them. The edge computing paradigm [2] emerged
to address these limitations by proposing to move (some)
computations from the center of the network (i.e., the cloud)
towards clients (i.e., the edge).
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Edge computing consists in performing computations out-
side of cloud infrastructures in computational resources that
are closer to data producers and consumers. However, edge
computing can have many different materializations due to its
broad definition [3]. One of the most popular is fog computing
[4]-[6], which promotes the placement of specialized servers
in close vicinity to client devices, promoting a simple hier-
archical topology where fog servers pre-process data before
shipping it to the cloud, thus being able to provide timely
responses to some of the client requests without waiting from
the cloud. This simple 3-tier (static) architecture [7], [8], with
the cloud data centers at the top, a fog server in the middle, and
client devices that produce and consume data at the bottom,
presents several limitations in terms of flexibility, availability,
and reliability, as the unavailability of a fog server can easily
disrupt the operation of a system in a large area, since each
fog server typically handles multiple client devices in a given
geographic location. Addressing this can easily incur in high
cost, either through redundant fog hardware or high amounts
of manual management. These issues are more evident in
smart city domains, such as connected heath-care [2] and
autonomous traffic systems [9], where such failures can lead
to inadmissible unavailability and disastrous results.

For such critical application domains, as well as applications
that mediate interactions among human participants [3] that
require constant availability and fast response times, edge
computing infrastructures should evolve to be more dynamic
and flexible, promoting decentralized self-management and
self-healing capabilities as to ensure high availability and
reliability with minimal operational costs. This might entail
taking advantage of other devices with computation power
that exist in the path between client devices and core cloud
infrastructures. Furthermore, we argue that the needs of such
applications often require geographical proximity of edge
resources to be considered, as to promote processing that
regards the location of clients (and the data produced and
consumed by them) as well as to lower response times.

The challenges of managing large scale systems in a
(mostly) decentralized way have been previously tackled in
the context of peer-to-peer (p2p) systems [10], where various
solutions emerged, namely distributed protocols that maintain
the system membership by building and managing a self-
healing decentralized overlay network [11], which can adapt
themselves to the needs of the applications operating on top
of them. In this paper we posit that such techniques can
serve as the foundation of novel architectures that can allow
edge computing solutions to achieve the properties discussed
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above, paving the way for novel edge-enabled applications to
emerge [3], in a hybrid cloud-edge environment that takes full
advantage of computational resources that span from the cloud
to the edge.

To this end, we explore how distributed overlay protocols
can be leveraged to provide nodes with (partial) membership
information about resources in close vicinity, and how such
topologies can be used to efficiently propagate management
information that can be leveraged to support the operation of
edge-enabled applications (in this context such information
can either be monitoring information [12] or management
commands [13]). Furthermore, we note that the continuum
of resources in the edge is naturally heterogeneous, exhibiting
highly variable capabilities in terms of processing capacity
and available bandwidth. Therefore, we strive to ensure that
nodes with more capabilities are positioned in the overlay
in a way that such nodes contribute more to both managing
the overlay topology and disseminate control information. We
achieve this with minimal configuration information, requiring
system administrators to configure each node with only the
contact information of an entry point in the system and a
numerical level that intuitively captures the proximity of the
node to cloud data centers, whereas we assume that nodes
closer to the core of the network have more computational
resources and available bandwidth [2], [3], [5].

In summary, in this paper we make the following main
contributions: i) we propose Bias Layered Tree, a novel
decentralized overlay network that builds a robust hierarchical
tree-based topology connecting the cloud infrastructure and
edge devices, in a way that takes into account their level
and relative network proximity; i) we provide a reference
implementation of Bias Layered Tree and several existing p2p
overlay management and dissemination schemes in a unified
code base'; iii) we conduct an extensive experimental study
on the impact of different overlay protocols and data dissemi-
nation mechanisms through emulation, using an heterogeneous
network composed of 100 devices, which as far as we know
is among the first experimental studies using real code in a
realistic heterogeneous environment.

The remainder of this paper is organized as follows: §II
discusses the requirements of management infrastructures for
hybrid cloud-edge environments; §III discusses the state of
the art, providing a survey on popular distributed protocols
for building overlay networks; § IV presents the design of Bias
Layered Tree; § V details our experimental work; and finally,
§ VI concludes the paper.

II. REQUIREMENTS FOR EDGE MANAGEMENT

To allow applications and systems to take full advantage of
the edge computing paradigm, it is essential to understand the
key properties of the hybrid cloud-edge setting. Many authors
have proposed models for the deployment and execution of
applications across the cloud and the edge [2], [3], [5], [14],
[15]. In this paper, we define the cloud-edge environment
as being composed of a set of devices that can either be

! Available at https://github.com/pedroAkos/EdgeOverlayNetworks.

the cloud or located in between the cloud and client devices
(including the extremes). Examples of edge devices include
mini or regional data centers, points-of-presence, ISP servers,
private servers, 5G towers with computing capabilities, among
others. We do not make any assumptions regarding the types of
devices, only that each has its own CPU, memory, and network
connection. We assume that each device can have associated
with it a number that we denominate /evel that captures how
far it is from the cloud infrastructure (i.e., cloud devices have
a level of zero, whereas the level increases as we get closer
to client devices). We also assume that CPU, memory, and
network capabilities of devices tend to decrease as the level
increases. We assume that system administrators that configure
devices to be part of a distributed cloud-edge platform can
provide an adequate level to each device considering both its
location and available resources.

The inherent complexity of this environment justifies the
need of specialized infrastructure support for applications that
aim at exploiting the full range of possibilities of the hybrid
cloud-edge environment. We further consider that solutions
with this aim should strive to have the following properties:

Decentralized: The cloud-edge environment is composed
by a large number of computational devices that exist between
the cloud and client devices themselves. This translates into
a vast number of computational resources, potentially under
different administrative domains, that require some form of
cooperation and coordination mechanisms to allow applica-
tions to take advantage of them through robust services. A
solution that relies solely on central authorities to manage the
system will be unable to efficiently manage such large number
devices, not only due to the scale of such infrastructures, but
also because that would become a lock-in point for regional
providers. This implies that control and management should be
decentralized enabling computational platforms operating in
the cloud-edge environment to scale and evolve in an organic
and efficient fashion.

Autonomous Fault Tolerance: A system that operates in the
cloud-edge environment will naturally be subjected to a high
level of dynamism in the form of nodes becoming available
and unavailable (a phenomenon usually called churn [16]).
This can be a consequence of, in addition to device fail-
ures, independent administrative decisions, consumption and
potential exhaustion of resources of edge devices, and network
anomalies (such as transient network partitions). This implies
that platforms to support the operation of applications in such
an ecosystem have to be designed to naturally self-reconfigure
in the presence of failures or other anomalies. Furthermore,
its operation should not require human intervention as to
minimize operational costs and avoid human error.

Maximize Proximity & Minimize Latency: One of the key
goals of edge computing is to reduce the latency between
centralized services and their clients, by moving key com-
ponents of these services to locations closer to clients. This
implies that an efficient management solution should take
into consideration the relative proximity between resources
being managed. To this end, one can take into consideration
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the latency between devices, which can be measured in the
background. However, this introduces a constant network cost
to keep measurements up-to-date while, at the same time,
measured latency can be highly variable. In this paper we
opt to capture the notion of proximity through the use of an
heuristic: the (bit-wise) length of the common prefix between
two IP addresses. This metric has been shown previously to
have a relevant correlation with network proximity among
devices [17], where larger common prefixes translates to
nodes in closer vicinity. This heuristic provides stable distance
metrics and can be computed by nodes without resorting to
the exchange of messages.

Adequate Load Distribution: As discussed previously, edge
resources are highly heterogeneous when considering their
capacity in terms of processing, memory, and network ca-
pabilities. Due to this, it is relevant to ensure that the load
imposed on devices is distributed in a way that respects their
capabilities, as to benefit applications without overloading
them. One way to achieve this is to ensure that resources are
logically organized in a way that takes their different capabil-
ities into consideration as to ease the process of distributing
tasks to them. Furthermore, the contribution of each device to
maintain the management infrastructure covering the cloud-
edge spectrum should also take this factor in consideration,
where more powerful devices should contribute more.

Most of the requirements discussed above have been also
pursued in the context of peer-to-peer (p2p) systems, particu-
larly in the context of overlay networks and data dissemina-
tion primitives, which provide abstractions that are essential
to the operation of a management platform for cloud-edge
environments. This motivates us to study the applicability of
some of these ideas, and how to evolve them, towards building
infrastructure support for edge-enabled applications.

III. RELATED WORK

In this work we focus in exploring decentralized overlay
network protocols to manage a set of heterogenous resources
across the cloud-edge environment with the goal of providing
to applications a platform that allows them to reap the potential
of edge computing. In the following we discuss some of the
most relevant solutions in the literature for building and man-
aging overlay networks, that typically are classified as being
structured or unstructured. We also discuss other solutions
that take advantage of such topologies to manage resources
and disseminate information. Some of the most illustrative
proposals from the literature are used in our experimental work
as baselines to our own proposal.

a) Structured Overlays: Structured overlays are mostly
employed for decentralized and efficient resource look-up and
application-level routing. To achieve this, most solutions, such
as Chord [18], Pastry [19], and Kademlia [20], are based on
a Distributed Hash Table, that typically organizes nodes in
a topology that is known a-priori based on node identifiers,
such as a ring. Overall, structured overlays have been shown
to be easily affected by churn, since failure leads nodes to have
errors in their tables, which are reinforced by the (concurrent)

arrival of new nodes, which ultimately leads the topology to
break with small chances of ever recovering. Furthermore, to
ensure the invariants associated with the target topology, when
a node is suspected of being faulty, the process to replace that
node in the topology typically requires additional time, which
allows for topology errors to be reinforced. Additionally, most
structured overlay protocols assume all peers to have similar
capabilities, and do not support hierarchical organization of
nodes which we employ in our own proposal.

b) Unstructured Overlays: Unstructured overlays, also
referred as random overlays, are commonly employed to
build scalable and robust membership protocols/services. They
provide an alternative to structured overlays since the partial
views maintained by each node have few or no invariants
that have to be enforced, hence the overlay topology can be
adjusted in response to failures in a timely manner. Protocols
that build unstructured overlays are usually distinguished by
the strategies employed to maintain their partial views, which
are key to guaranteeing connectivity (avoiding partitions and
node isolation) and minimizing path lengths (and consequently
overlay diameter). These strategies can be either reactive,
where changes to partial views are only performed in reaction
to some external event (e.g., a suspected fault, reception of a
message, etc); or cyclic, where partial views are periodically
updated. Reactive strategies allow for more stable topologies,
while cyclic strategies provide better sampling quality over the
nodes that are part of the system [11].

Cyclon [21] is a peer sampling protocol that builds a contin-
ually changing overlay network optimized to perform gossip
dissemination. To this end, Cyclon leverages a fixed length
partial view which is maintained by a cyclic strategy where
nodes periodically exchange messages containing samples of
their partial view which are used to update their local view
of the system. Cyclon associates with each node identifier an
age value (i.e., monotonic counters that are incremented only
by the local node) which allows these identifiers to be tested
in the periodic exchange of Cyclon, ensuring that faulty nodes
are eventually removed from every correct node partial view.

HyParView [22] combines a reactive strategy with a cyclic
strategy, maintaining two partial views (one managed by each
strategy). Due to this, HyParView is able to maintain a stable
small (symmetric) active view using a reactive strategy, which
effectively forms the overlay network used to support commu-
nication among nodes; and a larger passive view, maintained
by a cyclic strategy, that is used to replace suspected nodes
from the active view. To effectively maintain the passive view,
HyParView performs random walks to exchange samples of
both the active and passive views. This allows nodes to obtain
randomized samples, while only communicating through the
connections associated with the active view.

Although unstructured overlays tend to be very robust to
high levels of dynamism, this comes at the cost of not being
optimized to a specific goal, such as minimizing latency, which
is a desired property of fog architectures. However, there
are solutions that adapt the topology of overlays to improve
application-level requirements.
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c) Biased and Optimized Overlays: Several work have
explored how to improve the topology of overlay networks
considering a given criteria. Similarly in this work, we build
a specialized overlay network whose topology that maps to
the relative position of nodes in regard to a data center and
among themselves. MON [13] takes advantage of a gossip-
based dissemination mechanism to embed a short-lived dis-
semination tree among nodes which can be used to disseminate
administrative commands efficiently. Similar to our work,
MON attributes a numerical level to a node that represents
the logical distance of that node to the root of a tree, avoiding
the creation of cycles. Unfortunately, MON is tailored for short
interactions and hence the protocols lacks any fault tolerance
mechanism to recover the tree topology. Plumtree [23] uses
a similar strategy to MON to embed a tree over a random
overlay topology that can be used to efficiently disseminate
information. Plumtree uses links of the random overlay that
are not part of the tree to convey small control information
that allows to detect (in a decentralized fashion) partitions
in the tree and recover them locally. Plumtree assumes a
random overlay over which it operates, and does not make any
consideration about the capabilities of nodes, which can lead
nodes with limited capability to become interior nodes in the
tree, responsible for transmitting several messages, whereas
more powerful nodes can become leaves, not contributing with
their resources to disseminate messages. Our work builds an
overlay that (as we show further ahead) can be leveraged by
Plumtree to build more effective dissemination trees.

T-MAN [24] and X-BOT [25] are two protocols that
iteratively adapt the neighboring relations among nodes in a
random overlay to optimize a given performance criteria. T-
MAN ensures that the topology improves faster but at the risk
of allowing the topology to break, wheres X-BOT protects
the connectivity of the overlay by leveraging slower link
exchanges with minimal coordination among nodes, while
ensuring that a few links are never optimized. Contrary to our
solution, both of these protocols assume nodes to be similar in
capacity, biasing the overlay topology by mostly considering
proximity metrics (either based on network aspects such as
latency or node identifiers).

IV. BiAS LAYERED TREE

In this section we describe the design of a novel de-
centralized overlay network that we have designed to cope
with the requirements of a resource management platform to
support edge computing. The protocol takes inspiration from
HyParView [22] by taking advantage of two complementary
partial views: active and passive. Similar to HyParView, the
active view contains information on peers with whom the local
node interacts, and the passive view contains information on
candidate peers that are used to recover from faults. Contrary
to HyParView, Bias Layered Tree manages the contents of
the active view to build and maintain a tree topology across
nodes in the system by leveraging the previously described
level property, that encodes the distance of a given node to
the cloud infrastructure as well as serving as an indicator of

its capacity, and ensures a set of restrictions and properties
that are not commonly found in existing unstructured overlay
networks such as HyParView.

Pseudo-code notation: In the next sections we provide
the specification of Bias Layered Tree which is presented
as pseudo-code in Algorithm 1. In the pseudo-code each
node identifier is a tuple with four fields, which encode the
following relevant information: ¢) network identifier, i.e., an
IP address and port; i) age, which is an integer that represents
how much periodic communication steps have passed since a
message was exchanged with the node (which is similar to
the age parameter employed in the design of Cyclon [21]);
191) timestamp, which is a monotonically increasing counter,
which is only updated by the node identified by that tuple;
and 4v) status, which is a binary value that encodes if the
local node believes that peer to be correct or suspected of
failure. This last field is taken into consideration whenever
ordering sets of node identifiers, ensuring that suspected nodes
appear last. This allows to eventually remove node identifiers
of suspected nodes from passive views. In the pseudo-code, a
field with a value of _ is a wildcard for any value, and is used
to denote when that field value is not relevant for that step in
the protocol. Furthermore, function genId is used to return
a new tuple for a given node, with its age set to zero, and a
new timestamp.

A. Protocol State

The first few lines of Alg. 1 summarize the main parameters
used to control the operation of our algorithm and the main
data structures used to maintain the state of the protocol at
each node.

As discussed before, the activeView encodes node identi-
fiers with whom the local node exchanges information fre-
quently. This partial view is divided in three components
that have different sizes and represent the relationship of a
node with its peers. The first component has at most a single
identifier for the parent node, which must be on a lower level
(i.e., closer to the cloud) than the local node. The second
component of the active view contains a fixed amount of
peers that have the same level as the local node (controlled
by parameter siblingLimit), while we refer to such peers
as siblings, they may not share the same parent. Finally, the
third component of the active view is dedicated to maintaining
the identifiers of children nodes, having no strict limit to its
size. Peers in that component must be on a higher level (i.e.,
farther from the cloud) than the local node. Notice that this last
component leads active views to have different sizes across
nodes depending on the number of children. Neighboring
relationships are symmetric between peers in different levels
but not among siblings. A fault detector is locally executed for
peers in the active view, we use persistent TCP connections
to this end similarly to HyParView.

The passiveView contains information about peers across
different levels that is used to recover from faults and as a
source of potential candidates to improve the tree topology
maintained by Bias Layered Tree. Since levels have to be
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taken into account when recovering from failures, in Bias
Layered Tree, passive views are managed to ensure that its
contents provide information about peers in relevant levels.
Each node strives to have a given number of identifiers for
peers in the same level (defined by parameter passive Limit),
and the number of identifiers for the remaining levels decreases
as the distance of that level increases. E.g., if a node in level
3 is parameterized to have 5 identifiers of other nodes in its
level, it will strive to have 4 identifiers for levels 2 and 4, 3
identifiers for levels 1 and 5 and so forth. The rationale for
this is that most recoveries will take place by connecting to
peers in proximity to the local node (where the level value
encodes this abstract notion of proximity).

Notice that Bias Layered Tree strives to also bias the
topology of the generated tree so that links are preferably
established among nearby peers. To this end, we rely on the
IP address common prefix as a distance criteria. To support
this behavior, nodes keep the best peers according to that
criteria in their active and passive views, by sorting these
views (similar to T-Man [24]). To effectively build the tree
(i.e., create the links among nodes in different levels), nodes
are fully delegated to select their parent according to their
local view of the system. Since the correction of the topology
requires these links to be correct, nodes coordinate among
them to ensure the symmetry of these links, and both ends of
these links monitor their remote peer.

In the following we describe the mechanism employed
by Bias Layered Tree to build and maintain a level-aware
tree. In particular we discuss the join procedure that defines
the initial position of a node in the tree (§ IV-B), and the
mechanisms respectively used to maintain the tree (§ IV-C)
and to iteratively optimize the tree topology (§ IV-D).

B. Building the Tree

We begin the specification of Bias Layered Tree with the
join procedure. The algorithm does not show the initialization
procedure due to lack of space however, each node starts
by recording input parameters (including their level) and
initializes each view to be an empty set. Additionally, each
node setups timers to perform periodic actions (which will be
explained in the following sections) and sends a join message
containing its level to the contact node. We assume the contact
node to belong to level 0 and act as the root of tree. We further
assume that this node resides on a cloud infrastructure where
it can be easily replicated through solutions that provide high
availability [26]. Furthermore, new nodes set a timeout for
the join procedure. When the timeout triggers, the new node
restarts the join procedure if it has no nodes in its active view
(increasing the value of this timeout).

When the contact node receives a JOIN message, it creates
an empty FORWARDJOIN message for the new node and sends
it to itself (Alg. 1 lines 3 —4). The idea of the FORWARDJOIN
message is to gather information regarding the local topology
that contains adequate peers for the new node, allowing the
joining node to bootstrap its passive view with relevant (close)
peers and effectively join the tree topology by selecting a

suitable parent node. To this end, the FORWARDJOIN message
is propagated across the overlay through a biased random
walk, that is forwarded in each level towards the (next) best
node (from the local node’s active view) according to the
distance criteria considering the IP address of the new node
(Alg. 1 line 11). Nodes record their identifiers in a path set
sent with the message, to ensure the message is not forwarded
to nodes that have already processed it. Furthermore, the
message is forwarded within a given level up to a maximum
time to live (ttl) number of times (controlled by parameter RW
in Alg. 1). Once the ttl expires or all (locally) known peers in
the current level have been visited, the message is forwarded
to the next level (reseting the ttl and path). The random walk
ends when the new node receives the FORWARDJOIN message
(Alg. 1 lines 7 — 8). To achieve this, the protocol chooses
the best node for the next level from the ftopo data structure
of the FORWARDJOIN message (Alg. 1 line 20). To populate
the data structure, at each step, each node adds itself and
all elements of its active view that belong to the next level
(Alg. 1 lines 13 — 14), with the new node’s identifier also
being added (Alg. 1 line 19). The next level, in this context, is
defined as being the minimum level between the local node’s
level and the new node’s level (there can be gaps in nodes
levels in the system, i.e., a given level might not have any
node associated to it). Notice however that to avoid the size
of the FORWARDJOIN to grow indefinitely, at each step the
sample of the network contained within it is trimmed to ensure
that there is a maximum number of node identifiers per level
(with also a maximum number of levels being encoded in the
message), giving preference to levels that are closer to the
joining node (controlled by parameters joinT opoLevels and
joinTopoNodes in Alg. 1).

Because the FORWARDJOIN carries information about the
network topology, each node that processes the message takes
advantage of this information to update its local views (both
active and passive) (Alg. 1 line 6) with new information. This
is specially important for the new node, as this populates
its passive view, allowing it to join the tree topology by
selecting a parent node. To this end, the SELECTNEWPARENT
procedure (Alg. 1 line 42) is triggered which computes a set
of candidate parents composed by all nodes that are known
to reside in a level lower than that of the new node, across
both active and passive views (the active view here is used to
ensure that this procedure can also be used to optimize the
tree topology as discussed further ahead). The node selects a
candidate parent from the resulting set. The candidate is the
node with highest level (in the resulting set) that is closest to
the node considering the IP prefix distance heuristic. After this,
if the candidate parent differs from the current parent (which
is always true during the join procedure), the node sends a
PARENT message containing its old parent information (if it
had one) informing the new parent (Alg. 1 lines 48 —49). The
new parent introduces the node in its active view as a child,
and replies back to confirm that the operation succeeded. If
the candidate parent fails to respond (within a sensible time
frame), it is considered to be suspected of failure. In the next
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sections we discuss how the algorithm handles such scenarios.

C. Maintaining the Tree

To maintain the tree topology, Bias Layered Tree relies on
periodic interactions among nodes to gather information about
the current system configuration, and find candidate peers
to recover from faults and/or perform optimizations. These
interactions occur whenever a ShuffleTimer event is triggered
(Alg. 1 lines 22 — 27). The ShuffleTimer contains a view
parameter that is used to choose a peer to communicate with.
During initialization, the protocol sets two ShuffleTimers, one
with high frequency (e.g., every 2 seconds) and with view set
to the active view; and another with low frequency (e.g., every
10 seconds) and view set to the passive view. The rational is to
strive to keep localized information up-to-date, as this is most
useful to recover from faults; while occasionally exploring the
system membership in remote areas (which is more useful to
optimize the tree topology as discussed further ahead).

The periodic interaction begins by the local node incre-
menting the age value of all identifiers present in its active
and passive views, and selecting the oldest node in the view
provided by the timer (when using the passive view, and if
several nodes have the same age, the one that is most distant
considering the IP prefix criteria is picked). After selecting
the peer for the exchange step, the local node computes a
sample by selecting k, active nodes and k, passive nodes
which are closer (via the IP prefix criteria) to the chosen peer
(Alg. 1 line 26) and sends that sample and a newly generated
identifier for itself (i.e., an identifier with an age of 0 and a
current timestamp to reinforce that the local node is correct)
in a SHUFFLE message (Alg. 1 line 27) to the chosen peer.

When a node receives a SHUFFLE message (Alg. 1 line
28), it updates its active and passive views with the updated
information enclosed in the message (Alg. 1 lines 29). This is
achieved in the following way. For each node identifier in the
received message, if that node is contained in either the active
or passive view, it updates the information for that node if,
and only if, the received timestamp is higher than the locally
recorded one. If the node is not contained in either view, its
identifier is added to the local passive view. After this, the
passive view is sorted (considering the distance criteria and
the status of the node as explained before) and the end of
the list is trimmed to ensure that the passive view has the
target size. After this step, the node that received the SHUFFLE
message computes a reply sample to return to the sender
in a SHUFFLEREPLY message (Alg. 1 lines 30 — 31). Upon
receiving that message the sender updates the information in
its active and passive views using the same strategy discussed
above (Alg. 1 lines 32 — 33). If no SHUFFLEREPLY message
is received, the node that started this process will mark the
peer used in this exchanged as being suspected of failure.

Whenever a node crashes, the tree defined by Bias Layered
Tree may lose its connectivity, in which case its needs to be
repaired. This is identified when a node in the active view
becomes suspected. The recovery behavior depends on the
level of the suspected node. If the suspected node has a level

Algorithm 1: Bias Layered Tree

//Parameters
level //the local node level
siblingLimit //max sibling nodes
passiveLimit //passive view base limit
RW //ttl for biased random walk within a layer
joinTopoLevels //level information to carry in join
joinTopoNodes //node information to carry in join
Timeout //timeout for join procedure
ko //sample size from active view
kp //sample size from passive view

Local State:
1. activeView
2. passiveView

3. Upon JOIN (1) from node do:
4.  trigger send(FORWARDJOIN, node, I, RW + 1, {}, {}) to self

5. Upon Recv(FORWARDJOIN, node, I, ttl, path, topo) from sender do:
6. call updateViewsWith(topo)
7. if node = self then:
8 call SelectNewParent()
9. else:

10.  ttl «— tl — 1

11. nextHop <— getBestNextHop(path)

12.  nextLevel <— getNextLevel(level, 1)

13.  topo[level] +— topo[level] U genld(self)

14.  topo[nextLevel] <— topo[nextLevel] U activeView[nextLevel]
15. if ttl > 0 A nextHop # _L then:

16. path <— path U self

17. trigger send(FORWARDJOIN, node, 1, ttl, path, topo) to nextH op
18. else:

19. topo[l] <— topo[l] U genld(node)

20. nextHop <— getBestNode(topo[nexztLevel])

21. trigger send(FORWARDJOIN, node, I, RW, {}, topo) to nextHop

22. Upon ShuffleTimer (view) do:

23. call IncrementAgesOfAllNodes()

24. (oldest,_,_, _) <— getOldest(view)

25. if oldest # L then:

26. sample <— computeSample(oldest) U genld(self)
27. trigger send(SHUFFLE, sample) to oldest

28. Upon Recv(SHUFFLE, sample) from sender do:
29. call updateViewsWith(sample)

30. sample <— computeSample(sender) U genld(self)
31. trigger send(SHUFFLEREPLY, sample) to sender

32. Upon Recv(SHUFFLEREPLY, sample) from sender do:
33. call updateViewsWith(sample)

34. Upon NodeDown (node) do:

35. deadNodeLevel <— i : activeView[i] # L A (node,_,_,_) € activeView[?]
36. if deadNodeLevel # L then:

37. activeView[i] «— activeView[7] \ (node,_,_, )

38. if deadNodeLevel < level then:

39. call SelectNewParent()

40. else if deadNodeLevel = level then:

41. call FillActiveView()

42. Procedure SELECTNEWPARENT ():

43. (parent, parentLvl) <— getParentInfo()

44. lowerLevels «— {i : ¢ < level A passiveView[i] # L }

45. if lowerLevels # {} then:

46. cLvl <— highest(lowerLevels)

47. (candidate,_,_, ) <— getBestNode(passiveView[cLvl] U activeView[cLvl])
48. if candidate # parent A cLvl > parentLvl then:

49. trigger send(PARENT, parent, parentLuvl, genld(self)) to candidate

50. Procedure FILLACTIVEVIEW () do:

51. candidate <— getBestNode(passiveView[level])

52. if candidate # L then:

53. if #activeView[level] < siblingLimit then:

54. trigger send(HELLO, genld(self)) to candidate

55.  else if #activeView[level] = siblingLimit then:

56. toRemove <— getWorstNode(activeView[level])

57. if toRemove # L A isBetter(candidate, toRemowve) then:
58. trigger send(HELLO, genld(self)) to candidate

that is lower to the level of the current node (i.e., is its parent)
a new parent must be chosen (Alg. 1 lines 38 — 39) similarly
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TABLE I: Container Parameters per Level

Level | Number of Nodes | CPU Quota | Bandwidth In/Out (Mbps)

1
3
9
27
60

172
13
1/4
/5
1/6

2000 / 1000
1000 / 500
500 /250
250/ 125
100 / 50

0
;
3
i
to when the node first joined the system. If the node is in
the same level, a new sibling will be chosen to replace the
suspected node (Alg. 1 lines 40 —41). Finally, if the suspected
node has a higher level that the local node (i.e., is a child) no
local repair measure has to be taken. To handle the failure
of a sibling, a node simply executes the FILLACTIVEVIEW
procedure (Alg. 1 line 50), that uses information from the
passive view to locate nodes in the same level as itself, giving
preference to nodes that are closer to itself considering the IP
prefix distance heuristic and sending a HELLO message to that
peer, enabling the peer to become aware of the existence of
the local node.

D. Optimizing the Tree

Finally, the algorithm includes a periodical action to ver-
ify if a better parent is locally known, by executing the
SELECTNEWPARENT procedure, and also selecting siblings
that are closer to the local node considering the IP prefix
distance heuristic, by executing the FILLACTIVEVIEW proce-
dure, which are the same mechanisms introduced previously to
recover from faults. Notice that when the node is optimizing
the tree topology, it might need to disconnect from its current
parent. Additionally, once a child node disconnects from its
current parent it does not need to send an explicit message,
since this disconnection will create a suspicion on the local
node, leading its current parent to remove its identifier from
the active view to the passive view, updating the status of the
node to suspected. When picking better siblings the same can
happen, in which case the node will pick its worst sibling
(using the IP prefix distance heuristic) and disconnect from it.

V. EVALUATION

To evaluate our solution in a cloud-edge environment, we
emulated a network composed of 100 docker containers. Each
container was assigned an IP address, a level, and a latency
map. Nodes with small level values (i.e., closer to the cloud),
were assigned more CPU quota than nodes with higher level
values (i.e., closer to the edge). In fact, level zero was assigned
half of the total quota, level one was assigned a third, level
two a quarter, and so on. The network bandwidth available to
each level was also restricted with a similar division method,
starting with 1000 mbits of outgoing bandwidth to level
zero. Incoming bandwidth was set as the double of outgoing,
as it is common to have higher download bandwidth than
upload bandwidth. At startup, each container executes a set of
instructions (using the Linux tc tool) that apply the latency
map and bandwidth restrictions appropriated for that node. The
configuration of each level is summarized in Table L.

All experiments were conducted on the Grid5000 testbed
(https://www.grid5000.fr/), using 20 machines in a single
cluster. Each machine has an Intel Xeon Gold 5220, with
18 cores and 96 GiB of memory. In our experiments each

machine hosts 5 containers. Machines are connected through
two 25 Gbps Ethernet ports to a switch.

To obtain our configuration, we first generated a random
network of 10000 nodes with inet [27]. From this, we
extracted the subgraph composed of the first 100 nodes and
computed a matrix containing the shortest path distances
between all nodes. As inet places nodes in a two dimensional
plane and attributes the weights of edges (i.e., links) as
the euclidean distance (between the nodes), we generated IP
addresses that correlate with the distance, and multiplied the
distance matrix by 0.04 effectively generating latency values
between 4.76 and 831.52 milliseconds, with an average link
latency of 293.39 milliseconds. We took inspiration on how
BGP networks are organized [28], [29] to generate the IP
addresses. To this end, we explored the graph in a breadth-first
search pattern, considering each node to have as successors
the 3 closest nodes (that are not already successors of any
other node). For each explored node, we attributed a level
value and an IP sub-network. The level value was attributed
as the node’s height in the search tree, while sub-networks
were assigned by dividing the node’s parent sub-network (e.g.,
if node 0 has sub-network 10.10.0.0/16, its children nodes 1,
2, and 3, have sub-networks 10.10.0.0/19, 10.10.32.0/19, and
10.10.64.0/19, respectively). To assign an IP address to a node
while avoiding duplicates, we use the network IP with the last
digit set to 1 plus the network prefix length (e.g., child 1 in
the example above is assigned IP 10.10.0.20).

Each container executes our solution and relevant baselines
as a Java application. The used baselines are: HyParView [22],
X-Bot [25], Cyclon [21], and T-Man [24]. Because T-Man
requires a peer sampling protocol, our implementation of T-
Man takes advantage of our Cyclon implementation. X-Bot
was configured to optimize the latency of overlay links, with
the aid of an oracle that measures latency periodically (with
UDP pings) to known peers. T-Man and Bias Layered Tree
both optimize the distance considering the IP prefix distance
heuristic. All protocols are implemented in the same code
base and we validated each implementation independently
considering the results made available in each of the papers
that introduced these protocols.

Table II reports protocol-specific parameters used by each
protocol in our experiments. The first row of the table repre-
sents the common parameters applied to all protocols. In this
case, as all protocols perform a periodic shuffle operation, the
period was set to 2 seconds. X-Bot additionally contains the
similar parameters to HyParView, as the protocol performs
optimizations over the overlay built by HyParView. Similarly,
T-Man inherits Cyclon’s parameters. Furthermore, all network
communication performed by our implementations are via
TCP connections.

As propagation of control and management information is
essential to manage a complex system that spans from the
cloud to the edge, we evaluate the overlay solutions when used
for data dissemination. We employ two different dissemination
protocols. A simple, but costly, Flood Gossip protocol [22],
that forwards a message to all its neighbors when it receives it
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TABLE II: Protocol Parameters

Protocol

Parameter | Value

Common | Shuffie AT | 2s
Active View Size 3 (+1parent) (+Nchildren)
Passive View Size 4 (46) (+4) (+2)
Shuffle Sample Size 6 (2+4)
Optimization AT 2s
Bias Layered Tree Forward Join Level Random Walk Length 3
Levels in Forward Join 5
Nodes per Level in Forward Join 4
Long Distance Shuffle AT 10s
Fill Active View AT 1s
Active View Size 7
Passive View Size 8
HyParView Shuffle Sample Size 6 (2 +4)
Active Random Walk Length 2
Passive Random Walk Length 4
Not-Optmized Neighbors 2
X-Bot ()mf:]e. A.T 2s
Optimization AT 15s
Optimization Sample Size 4
Cyclon ‘ Cache Size . ‘ 15
Shuffle Sample Size 7
Fanout 5
T-Man View Size 7
Gossip AT 2s

for the first time; and the more efficient Plumtree [23] proto-
col, that embeds a tree structure on the overlay, by considering
feedback from (previous) message propagations. All results
reported here are an average of three independent runs. Results
showed low variability across independent executions.

A. Performance Evaluation

We start by presenting the performance evaluation in fault-
free scenarios. In this set of experiments, we measure and
compare the average latency for delivering messages, the
dissemination throughput (delivered messages per time unit),
and reliability as the percentage of nodes that deliver each
message. In these experiments, a 1 minute period is used for all
nodes to join the overlay before beginning the dissemination
of messages. No measures are taken during this period.

a) Reliability under Load: Figures la and 1b present
a measure of the average reliability (in the y axis) for each
message (in the x axis) for each protocol while under heavy
load using respectively, Flood and Plumtree as dissemination
strategies. In this experiment, messages are generated with a
frequency of 1 message per second. During the first 60 sec-
onds, only a single node generates messages, this is required
to allow Plumtree to converge to an adequate configuration.
Afterwards, all nodes start to send messages for 440 seconds.
Notice that this means, that after point 60 in the x axis, the
average reliability represents the average reliability of 100
messages (one per node). The size of the payload of each
message is 20.000 bytes, which saturates the bandwidth of
the higher-level nodes. The experiment has a duration of 20
minutes to accommodate network queuing effects.

Figure 1a shows results achieved with Flood, the results are
similar for all protocols except Cyclon and T-Man. Cyclon’s
operation forces neighborhoods to change at every shuffle
operation. This however, leads TCP connections to be closed,
and consequently messages queued in the operative system
(due to network saturation) to be dropped. The queuing effect
is mostly visible at the end of the experiment with HyParView,
where the last messages have not been delivered for all nodes.
T-Man is unable to achieve a reliability of 100% as T-Man
formed a network with clusters that are disconnected among

them, due to its aggressive optimization strategy (this aligns
with previous findings reported in [25]).

Figure 1b shows results obtained with Plumtree. We note
that most protocols can maintain 100% reliability even while
under heavy load. This is due to Plumtree’s better usage of
network resources, which is achieved by avoiding to transmit
large redundant messages. The exception to this is Cyclon,
since Plumtree was not designed to operate on overlays whose
partial views contents change frequently. This leads Plumtree
behavior to degenerate to that of a Flood protocol, yielding
similar results. In both scenarios, our solution is able to
achieve a broadcast reliability of 100%.

b) Latency under Load: Figures lc and 1d report the
average latency (in the y axis in logarithmic scale) measured
for each message (in the x axis) in the previous experimental
setup using Flood and Plumtree respectively.

Figure 1c reports values for the Flood protocol. As expected,
the latency for all solutions increases linearly as messages
begin to be queued in the operating system. We notice that
T-Man and Cyclon present lower latencies, but this is because
their reliability is also lower (latency is only measured for
messages that are delivered). For the remaining protocols,
we notice that HyParView has the highest latency, this is
because HyParView does not perform any optimization, which
is improved by using a solution such as X-Bot.

Our solution is able to provide the lowest latency. This
happens due to the way our overlay operates, by positioning
nodes with higher capacity at higher points in the tree,
which allows to mitigate the queuing effect due to network
saturation. These effects are more prominent in experiments
with Plumtree (in Figure 1d), where the latency increases for
competing alternatives, while our solution maintains a stable
average latency. In fact, the average latency drops after the first
messages are sent by all nodes, as Plumtree is able to adjust its
configuration to make a better use of available overlay links.

c) Throughput: Figures le and 1f report the (maximum)
throughput (in the x axis) and latency (in the y axis) observed
for each protocol for increasingly rates of broadcast messages
being generated by second, varying from 1 (first point on
each line) to 100 messages per second per node (last point
on each line). The payload size of each message is 1000
bytes. These experiments run for 4 minutes and we collect
metrics of received messages and their average latency every
10 seconds. Each point represents the maximum number of
messages received with minimum average latency.

Figure le shows the results with Flood Gossip. In this
figure we can see that Cyclon begins to saturate very early,
and stabilizes with an average latency of 20s, after which,
as seen before, its reliability drops. We note that X-Bot is
able to achieve a slightly higher throughput than HyParView
albeit at the cost of higher latency. This can be explained
through the fact that messages not delivered are not considered
when computing the latency, which means that X-Bot is able
to deliver more messages in 10 seconds but overall these
messages take more time to be delivered; while HyParView
is experiencing message queuing. Our solution experiences
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Fig. 1: Performance of protocols under heavy load

less queuing due to its hierarchical structure and therefore
significantly outperforms the competing alternatives.

Figure 1f shows the results when using Plumtree to dis-
seminate messages. In this figure we can see that, while other
solutions start saturating at around 20 messages per second,
our solution is able to keep an higher throughput and lower
latency until approximately 50 messages per second, when it
also starts saturating. As explained previously, this happens
because the overlay created by our solution takes into account
the bandwidth of nodes (encoded on the level), leading nodes
with less bandwidth to become leafs in Plumtree dissemination
tree, preventing them from becoming bottlenecks.

B. Fault-Tolerance Evaluation

Considering fault-tolerance, we tested how the various pro-
tocols react to different failure scenarios, by failing 10%,
25%, and 50% of all nodes in the network simultaneously.
For these experiments, we measured reliability per message
achieved by each protocol during the failure with only a single
transmitter, as the goal is to evaluate the ability of the different
overlays to reconfigure themselves in the presence of node
failures. However, the payload of messages is increased to
500.000 bytes, to ensure that the network is close to saturation.
Messages are broadcasted every second for a period of 400
seconds. Experiments have a full duration of 10 minutes with
faults being induced close to the transmission of message 260
(notice however that nodes take some time before failing).
As previously, we allow 1 minute for stabilization without
messages being broadcasted.

Figure 2 shows the results for the experiments with faults
using Flood and Plumtree. The results show that with a low
level of failures (Figs. 2a and 2d), Bias Layered Tree is able
to recover faster and regain 100% reliability faster, this can

be explained by the the limited impact of these faults into the
tree topology. However, higher numbers of faults (statistically)
affect an increasing fraction of interior nodes, leading the tree
to break with a negative greater impacts in the reliability of the
dissemination protocols (Figs. 2b and 2e). Finally, with 50%
failures (Figs. 2c and 2f), the impact on the reliability in Bias
Layered Tree is more noticeable than in competing alternatives
however, the recovery speed of our tree is on par with the other
protocols. This is because our recovery mechanism is based
on the same principles as HyParView and X-Bot, that leverage
the passive view to replace suspected nodes from the active
view, albeit with additional restrictions for which we bias the
contents of our passive views.

VI. CONCLUSION

In this paper, we presented a study on the viability of
adapting existing p2p solutions to manage complex systems
that span from the cloud to the edge, as opposed to using
small static hierarchies as the ones typically employed for Fog
Computing. We also presented a novel decentralized mem-
bership protocol, named Bias Layered Tree, which takes into
account the computational and network capacity available in
each node, encoded in a numerical level associated with each
node, and a proximity criteria based on IP prefix commonality,
to build a robust hierarchical tree topology that connects and
allows to manage large numbers of nodes across the cloud
and edge. We evaluated our solution and relevant baselines
found in the state of the art in an emulated edge network with
100 heterogeneous nodes. Our results show that it is possible
to build decentralized membership management solutions that
can more efficiently disseminate application and management
information by adapting overlay networks to explicitly take
into account capacity and distance between devices.
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