
Enabling Wireless Ad Hoc Edge Systems with Yggdrasil∗

Pedro Ákos Costa

NOVA LINCS & DI/FCT/NOVA

University of Lisbon

Lisboa, Portugal

pah.costa@campus.fct.unl

André Rosa

NOVA LINCS & DI/FCT/NOVA

University of Lisbon

Lisboa, Portugal

af.rosa@campus.fct.unl.pt

João Leitão

NOVA LINCS & DI/FCT/NOVA

University of Lisbon

Lisboa, Portugal

jc.leitao@fct.unl.pt

ABSTRACT
Wireless ad hoc networks were extensively studied in the past given

their potential for scalability, ease of deployment, and suitability for

scenarios where no infrastructure is available. Considering the re-

cent relevance of applications, particularly in the Internet of Things

(IoT) and edge computing domains, revisiting these networks be-

comes a necessity, as to develop novel distributed applications. Dis-

tributed applications are highly complex as they require multiple

services and abstractions supported by a wide range of distributed

protocols, specially in such adverse domains.

To simplify the development of applications in ad hoc networks,

in this paper we present Yggdrasil, a novel framework and mid-

dleware specifically tailored for the development and execution of

distributed applications and associated protocols using commodity

devices in such networks. Yggdrasil provides a simple yet effec-

tive development environment, which is achieved by combining an

event driven programming model with a multi-threaded execution

environment that shield the programmer from concurrency issues.

A fully functional prototype was developed in C and experimentally

evaluated using a fleet of 24 Raspberry Pis.

CCS CONCEPTS
•Networks→Adhocnetworks; •Computingmethodologies
→Distributed algorithms; • Software and its engineering→
Application specific development environments;

KEYWORDS
Wireless Ad Hoc Networks, Distributed Protocols, Framework

ACM Reference Format:
Pedro Ákos Costa, André Rosa, and João Leitão. 2020. Enabling Wireless Ad

Hoc Edge Systems with Yggdrasil. In The 35th ACM/SIGAPP Symposium on
Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3341105.3373908

∗
The work presented here was partially supported by the Lightkone European

H2020 Project (under grant number 732505), NOVA LINCS (through the FC&T

grant UID/CEC/04516/2013), and NG-STORAGE (through the FC&T grant PTDC/CCI-

INF/32038/2017).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00

https://doi.org/10.1145/3341105.3373908

1 INTRODUCTION
Wireless ad hoc networks were extensively studied in the past

given their potential for scalability, ease of deployment, and suit-

ability for scenarios where there is no infrastructure, such as war

scenarios [37], natural disasters [11], among others. In this context,

multiple protocols were proposed by the scientific community, from

routing [13, 31], data aggregation [5, 20], fault tolerant dissemina-

tion [1, 25], and even byzantine agreement protocols [27]. However,

the number of practical applications based on wireless ad hoc net-

works, particularly applications that have large numbers of devices

actively interacting and collaborating, is not significant nowadays,

with the exception of very few success cases [2, 21].

The recent increase in popularity and interest on applications

in the Internet of Things (IoT) [40] and smart cities [4] domains,

among others, motivate the need to revisit and address the inherent

challenges of wireless ad hoc networks [32, 34]. These applications

often rely on cloud-based solutions however, given the rapid in-

crease in the volume of data being generated by such applications,

the cloud is rapidly becoming unable to receive, process, and re-

spond, in a timely fashion, to the generated load. Given that data

generated by such applications is expected to continue increas-

ing [6], it is essential to build novel solutions to decentralize data

processing. This is also relevant to lower operational costs of such

applications and allow them to be easily deployed and operated

(potentially by common users).

The edge computing paradigm [35] presents itself as a viable so-

lution, as it promotes moving computations and storage beyond the

boundaries of data centers, allowing computations to be performed

closer to end clients, potentially (but not exclusively) directly on

client devices. In some particular scenarios, such as smart cities,

smart spaces, smart agriculture, and smart extraction of resources

(e.g., mining), it may be convenient to support the direct interaction

between edge devices that lack access to network infrastructures.

In this case, the use of wireless ad hoc networks and a variety of

distributed protocols for these scenarios, becomes a viable and inter-

esting approach. Additionally, the development of novel protocols

and solutions for ad hoc networks, may enable novel distributed

applications with edge components, particularly mobile and highly

interactive user-facing applications [14, 36].

To enable novel edge applications (that operate over wireless

ad hoc networks) to emerge, in this paper we present Yggdrasil, a

novel framework and middleware runtime tailored for the devel-

opment and execution of distributed applications and associated

protocols in wireless ad hoc environments. Yggdrasil offers develop-

ers a simple and effective development environment that promotes

modularity. This is achieved by the clever combination and inte-

gration of a set of well known abstractions and techniques that

2129

https://doi.org/10.1145/3341105.3373908
https://doi.org/10.1145/3341105.3373908
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3341105.3373908&domain=pdf&date_stamp=2020-03-30

include: an event-driven execution model; a multi-threaded execu-

tion environment that shields developers from handling (complex)

concurrency issues; simple and intuitive interaction mechanisms

between protocols and applications; and low-level communication

primitives tailored for wireless ad hoc networks. A prototype of Yg-

gdrasil was developed in C, allowing the execution of protocols and

applications in commodity devices (e.g., laptops, micro-computers),

while also supporting more resource constrained devices.

The remainder of the paper is organized as follows: Section 2

discusses our system model; Section 3 presents the Yggdrasil frame-

work and its main components; Section 4 illustrates the use of

the API provided by Yggdrasil; Section 5 details our experimental

work using a fleet of 24 Raspberry Pi 3 - Model B; Section 6 briefly

discusses related work; and finally, Section 7 concludes the paper.

2 SYSTEM MODEL
Distributed applications leverage the computational resources of

various devices to provide services for either other applications or

users. However, achieving this in a distributed setting is a daunting

task, more so in wireless ad hoc networks where network infras-

tructure is not available. Usually, distributed applications rely on a

set of distributed protocols that cooperate to provide abstractions

that support the operation of the application [10].

In more detail, we model a distributed application for wireless ad

hoc networks as a system operating on a wireless ad hoc network,

in which a set of processes, that contain application logic and a set

of local instances of distributed protocols, cooperate and interact

to materialize the application. Each process resides in a node (i.e.,

device), which has its own resources (CPU, memory, disk, etc). All

interactions among different processes are performed through the

exchange of messages via the wireless medium and only instances

that reside in nodes that are directly reachable through their radios

can communicate directly. We say that such processes (or nodes)

are neighbors in the ad hoc network.

In the following we analyze a distributed protocol that provides

an application with the membership of the system, identifying the

primitives that are necessary for a programming framework and

runtime middleware (such as Yggdrasil) to support the development

of such distributed protocols and applications.

A SimpleMembership Protocol. Distributed protocols are often
described as algorithms that follow a state machine model [7, 10,

15, 16]. As such, protocols are modeled as having an internal state

that can be exposed or evolve through the reception, and handling,

of asynchronous events. Algorithm 1 illustrates a simple member-

ship protocol for wireless ad hoc networks that maintains, locally

at each node, a set containing the identifiers of all other known

processes in the system. The protocol operates by having each node

in the system, periodically, sending (through one-hop broadcast)
a message containing a random sample of up to k nodes present in

the local membership set. Nodes that receive such a message from

another node integrate previously unknown node identifiers into

their local state.

The algorithm has a header that denotes the interface of the

protocol i.e., the interactions that the protocol supports with other

(local) protocols or applications. In this example the protocol is

able to process a request getMembership to which it produces a

Algorithm 1: Example Membership Protocol

Interface:
Requests:
getMembership ()

Replies:
members (m) //m is the set of all known nodes in the system

Notifications:
newMember (n) //n is the newly found member of the system

1: Local State:
2: membership //The set of members in the system
3: k //sample size

4: Upon Init (pid , ∆T , sampleSize) do:
5: membership←− {pid } //pid is the local process identifier
6: k ←− sampleSize
7: Setup Periodic Timer Announce (∆T)

8: Upon Timer Announce do: //every ∆T
9: subSet←− getMemberSubSet(membership , k)
10: Trigger OneHopBCast Sample (subSet)

12: Upon Receive Sample (subSet) do:
13: foreach n ∈ subSet : n < membership do:
14: membership←− membership ∪ n
15: Trigger Notification newMember (n)

16: Upon Request getMembership () do:
17: Trigger Reply members (membership)

reply members containing a copy of the locally maintained set of

node identifiers. Furthermore, the membership protocol denoted

in Algorithm 1 also issues a notification newMember whenever a
new identifier is added to the local set. This notification is delivered

to any system component (protocol or application) that registers

interest in receiving it. Notice that while a reply is always generated

in response to a request (and directed to the original issuer of

the request), a notification can be generated at any point in the

execution of a protocol.

The algorithm defines the local state maintained by the protocol

in each node (Alg. 1 lines 1 − 3). The protocol maintains the set of

known members in the system (Alg. 1 line 2), and the k parameter

that controls the maximum sample size sent in periodic messages.

Following the state machine nomenclature, a special Init handler is
used to initialize the protocol internal state upon bootstrap. In the

case of this membership protocol, this is achieved by initializing

the membership set with the local node identifier, and setting the

value for parameter k (Alg. 1 lines 5 − 6). Since the algorithm

relies on a periodic action (sending a message) it also configures

a periodic timer (that triggers every ∆T). The reception of this

special Timer event, leads the protocol state machine to execute

the transmission of the sample message containing the sample of

the local membership set (Alg. 1 lines 8 − 10).

When a sample message is received (Alg. 1 line 12), the protocol

adds the unknown members contained in the message to its local

membership (Alg. 1 lines 13 − 14) and triggers a notification to

be delivered to any interested local protocol or application, that

notifies the existence of a new node in the system (Alg. 1 line 15).

3 YGGDRASIL
Yggdrasil is a programming framework and middleware runtime

that allows distributed protocols and applications to be easily de-

veloped following their specification. This is possible by the clear

and specifically tailored programming model exposed by Yggdrasil.

2130

Operating System

Yggdrasil Runtime

Low Level
Yggdrasil Library Dispatcher Protocol

Timer Management Protocol

Protocol Executor

Protocolos

Applications

Figure 1: Simplified Yggdrasil’s Architecture.
Furthermore, at its core, Yggdrasil combines multiple techniques

to ensure efficient execution of protocols and applications, namely

by ensuring parallel execution (when the hardware allows it) and

ensuring low memory and processing footprints, making Yggdrasil

suitable not only for commodity devices but also to devices with

limited capability.

3.1 Protocols in Yggdrasil
In Yggdrasil, each protocol is modeled (and implemented) as a state

machine. In more detail, each protocol has its own internal state

that evolves accordingly to the (sequential) reception and process-

ing of events. Protocols can generate events to be processed by

themselves, or to be delivered to other protocols. The events that

guide the execution of protocols are divided in four types, moti-

vated by common distributed protocols and applications operation

and interaction patterns. These are: i)Messages, that are the only
type of event that can be transported between processes (i.e., dif-

ferent nodes), messages can be destined to all neighboring nodes

(i.e., one-hop broadcast) or to a single neighbor (i.e., point-to-point);

ii) Timers, that notify the execution of some periodic task or that

a local timeout occurred; iii) Requests/Replies, that allow the di-

rect one-to-one interaction between protocols in the local process;

and finally, iv) Notifications, that allow the indirect one-to-many

interaction between protocols in the local process.

Within a Yggdrasil process each protocol and application is, by

default, executed in the context of an independent execution thread,

enabling their evolution in parallel. Protocols (and applications) are

provided with an event queue from which they wait for events to

be consumed. Each protocol and application is internally associ-

ated with a numeric identifier. Events are tagged with the numeric

identifier of the protocol which created the event and to which it

should be delivered. This allows events created by one protocol to

be delivered by Yggdrasil to another protocol (or application) by

pushing the event into the appropriate event queue.

We note however, that certain event types are more delay sen-

sitivity than others (e.g., Timers). To cope with this, event queues

are modeled to prioritize event types, meaning that when different

event types are present in the queue, those are consumed in a spe-

cific order according to their type: first timers, then notifications,

messages, and finally requests/replies.

3.2 Yggdrasil Design
Figure 1 depicts a high-level overview of Yggdrasil’s architecture.

Yggdrasil operates above the operating system, in particular, it con-

siders a unix-based general-purpose operating system. From the

operating system we assume abstractions to configure the radio de-

vice and the wireless network, in addition to standard abstractions

and programming interfaces (e.g., concurrent execution, synchro-

nization mechanisms such as mutex and semaphores).

Yggdrasil is composed by four main components (darker toned

components in Figure 1) that cooperate to support the execution of

protocols and applications. These include: the Yggdrasil Runtime,
which configures the radio device to enable network communica-

tion through the Low Level Yggdrasil Library, and handles the

execution of protocols and applications by providing the API and

managing event queues to consume and produce events; a Dis-
patcher Protocol, that handles all network communication; the

Timer Management Protocol, which monitors all Timer events

set within the local Yggdrasil process; and a Protocol Executor,
that allows some protocols to share a single execution thread.

In more detail, an Yggdrasil application starts by initializing the

Yggdrasil Runtime, providing it with a network configuration which

includes the radio mode (in this case ad hoc), the frequency of the

radio, and the network name to be joined (or created). The Runtime

configures the radio device through the Low Level Yggdrasil Library,

which uses low level system calls to manipulate the radio interface.

This library is also responsible to provide the Runtime with a Chan-
nel abstraction, through which network messages are exchanged.

The channel is configured as a low-level network communication

device, that allows messages to be exchanged directly at the MAC

layer (i.e., layer 2 of the Network Stack). A kernel packet filter is

also installed in the channel to filter unwanted network messages

from sources other than Yggdrasil processes (e.g., ARP packets).

Additionally, the Runtime prepares the remaining main com-

ponents of Yggdrasil, which we name core protocols. This entails
initializing an event queue for each core protocol and providing

the Dispatcher access to the previously created channel. Core pro-

tocols have reserved numeric identifiers however, the application

developer can override each one with a variant of her own de-

sign providing similar or enriched functionality. For instance, the

Dispatcher Protocol could be replaced by one that encrypts and

decrypts all network messages.

After the Runtime is initialized, the application registers itself

and the protocols it will use in the Runtime. The Runtime prepares

and associates an event queue for each protocol and application,

and triggers the special Init event for each protocol and application

(which in turn, initializes their internal state). Each protocol and

application contains a configuration that is provided to the Run-

time upon their registry. This configuration includes information

about produced and consumed notifications (the latter from other

protocols).

Execution Modes. Each protocol and application configuration

also states how it should be handled by the Yggdrasil Runtime:

it can rely on an independent execution thread; or share a single

execution thread with other protocols. The latter is achieved by

taking advantage of the Protocol Executor.

Protocols that execute within the Protocol Executor, share the

same event queue, being the Executor responsible to multiplex

events across protocols. The Protocol Executor also allows protocols

to be safely started and stoped at runtime. This allows to have

protocols that can be dynamically used by applications to deal

with changes on the operation environment (e.g., using protocols

2131

that make less use of the wireless medium, if the wireless medium

appears to be saturated).

Notice that in Yggdrasil the programmer is not responsible to

manage the execution threads of any protocol. Instead these are

managed internally by the Yggdrasil Runtime.

Support for Piggybacking. In some cases a protocol might ben-

efit from piggybacking information on messages sent by other

protocol. Piggybacking information is a technique often employed

to perform optimizations, in protocols and applications, to lower

the amount of messages sent to the network. This is particularly

relevant when information to be sent is small, since it allows to

lower the occupation of the wireless medium. To enable this behav-

ior, the Yggdrasil Runtime allows a protocol to intercept the event

queue of another protocol. This will lead the Yggdrasil Runtime to

transparently deliver events destined to the intercepted protocol to

the interceptor instead. As pointed out above, this is particularly

useful to add control information to messages. However, the inter-

ceptor protocol, becomes responsible for: i) routing the event to

the original destination (for messages, usually the Dispatcher), and

ii) replace the destination of the message to be itself, such that on

the remote node, any control information added can be removed,

before the message reaching its original destination.

4 IMPLEMENTING OUR SIMPLE PROTOCOL
A fully functional prototype of Yggdrasil was implemented using

the C language, and has been used to implement various protocols

and simple (demo) applications that exercise these protocols. These

include, neighbor discovery, fault detectors, different flavors of dis-

tributed aggregation, application-level broadcast, routing, reliable

point-to-point communication, topology control, and experiment

management protocols; the last two are dedicated to simplify the

execution of (distributed) experimental evaluations. The prototype

is available at https://github.com/LightKone/Yggdrasil.

To showcase how a protocol can be implemented in Yggdrasil, we

present an implementation (Figure 2) of the membership protocol

specified in Algorithm 1. Similar to the specification, the imple-

mentation is divided in three parts: i) the local state, ii) the event
handlers, and iii) the initialization of the protocol. The header sec-

tion presented in Algorithm 1 is omitted due to lack of space (this

is reported to Yggdrasil as part of the protocol configuration).

We note that there is an expansion in the number of lines be-

tween the C implementation and the pseudo-code represented in

Algorithm 1 however, given the verbosity of the C language, we

consider the implementation to be quite compact, specially when

comparing an implementation leveraging Yggdrasil and a C stan-

dalone implementation of the same protocol.

Local State. In Yggdrasil a protocol defines a structure containing

the state it maintains. Lines 2− 3 in Fig. 2 directly map to lines 3− 4

in Alg. 1. An uuid_t is a universally unique identifier, represented

by a char[16] and a list* is a pointer to a generic list type.

The following line 5 in Fig. 2 is a variable specific to Yggdrasil,

the proto_id, which represents the protocol’s unique numeric

identifier, whose value should be defined (by Yggdrasil convention)

in the protocol’s header file.

EventHandlers. The protocol handles three types of events: timers

(Fig. 2 lines 8 − 18); messages (Fig 2 lines 20 − 33); and requests

1 /* ---------------- Local State ------------------ */

2 typedef struct state {

3 list* members;

4 int k;

5 short proto_id;

6 };

7 /* --------------- Event Handlers ---------------- */

8 static short Announce(YggTimer* timer, struct state* state) {

9 YggMessage msg; YggMessage_initBcast(&msg, state->proto_id);

10 list* subSet = getMemberSubSet(state->members, state->k);

11 while(subSet->size > 0) {

12 char* member_id = list_remove_head(subSet);

13 YggMessage_addPayload(&msg, member_id, sizeof(uuid_t));

14 free(member_id);

15 }

16 dispatch(&msg); YggMessage_freePayload(&msg);

17 return SUCCESS;

18 }

19

20 static short ReceiveSample(YggMessage* msg, struct state* state) {

21 void* ptr = NULL; uuid_t id;

22 while((ptr = YggMessage_readPayload(msg, ptr, id, sizeof(uuid_t))) != NULL) {

23 if(list_find_item(state->members, (equal_function) equal_id, id) == NULL){

24 char* mid = malloc(sizeof(uuid_t)); memcpy(mid, id, sizeof(uuid_t));

25 list_add_item_to_head(state->members, mid);

26

27 YggEvent ev; YggEvent_init(&ev, state->proto_id, NEW_MEMBER);

28 YggEvent_addPayload(&ev, id, sizeof(uuid_t));

29 deliverEvent(&ev); YggEvent_freePayload(&ev);

30 }

31 }

32 return SUCCESS;

33 }

34

35 static short getMembers(YggRequest* req, struct state* state) {

36 if(req->request == REQUEST && req->request_type == GET_MEMBERS){

37 YggRequest_freePayload(req); //should already be NULL

38 YggRequest_Reply(req, state->proto_id);

39 for(list_item* i = state->members->head; i != NULL; i = i->next) {

40 YggRequest_addPayload(req, (char*) i->data, sizeof(uuid_t));

41 }

42 deliverReply(req); YggRequest_freePayload(req);

43 return SUCCESS;

44 }

45 return FAILED;

46 }

47 /* ---------------- Initialization ----------------- */

48 proto_def* membership_init(membership_param* args) {

49 struct state* state = malloc(sizeof(struct state));

50 char* pid = malloc(sizeof(uuid_t); getmyId(pid);

51 state->members = list_init(); list_add_item_to_head(state->members, pid);

52 state->proto_id = PROTO_MEMBERSHIP;

53

54 proto_def* membership = create_protocol_definition(state->proto_id,

"Membership", state, membership_state_destroy);

55 proto_def_add_produced_notifications(membership, 1); //NEW_MEMBER

56

57 proto_def_add_msg_handler(membership, ReceiveSample);

58 proto_def_add_timer_handler(membership, Announce);

59 proto_def_add_request_handler(membership, getMembers);

60

61 YggTimer_init(&state->announce, state->proto_id, state->proto_id);

62 YggTimer_set(&state->announce,

63 args->announce_period_s, args->announce_period_ns, //first notification

64 args->announce_period_s, args->announce_period_ns);//periodicity

65

66 setupTimer(&state->announce);

67 return membership;

68 }

Figure 2: Membership Yggdrasil Implementation.

(Fig. 2 lines 35 − 46). We note however, that if a protocol processes

different events of the same type (e.g., different types of messages),

these have to be multiplexed by the protocol when handling that

type of event. This is because the Yggdrasil Runtime does not have

knowledge of how protocols internally operate to avoid breaking

the isolation that Yggdrasil imposes over protocols, and minimize

complex interactions between protocols and the Yggdrasil Runtime,

such as registering each message handled by a protocol individually.

When the protocol processes a timer (Fig. 2 line 8), it begins by

creating and initializing a message to be sent to the MAC broad-

cast address (ff:ff:ff:ff:ff:ff) (Fig. 2 line 9). The protocol

2132

https://github.com/LightKone/Yggdrasil

proceeds to generate a subset of members (we omit details on this

function) and adds each node identifier to the message’s payload

(Fig. 2 lines 10−15). The instructionYggMessage_addPayload,
copies the contents of state->n_idwith sizesizeof(uuid_t),
to the next available position in the message’s payload (calculated

automatically by taking into consideration the number of bytes

added previously) and updates the size of the message payload. The

message is sent to the Dispatcher with the instruction dispatch
(Fig. 2 line 16), which performs a deep copy into the Dispatcher

Protocol’s event queue. Deep copies are used when adding events to

queues to avoid concurrency issues. Finally, because event payloads

are dynamically allocated in Yggdrasil, the payload of the message

must be freed (Fig. 2 line 16).

When the protocol processes a message (Fig. 2 line 20), it reads

the member identifiers in the payload of the received message,

and verifies, for each one, if it is already contained in its local

membership list. If a new member is found (not in the local mem-

bership list), the protocol adds the new member’s identifier to its

local membership list (Fig. 2 lines 22 − 25). The important aspect

to notice here is how the payload is read with the instruction

YggMessage_readPayload. This instruction readssizeof(uuid_t)
bytes from the payload of the msg starting at the position pointed

by ptr (if NULL, from the beginning), stores the read contents

in id, and returns a pointer to the last position read (or NULL if

there are no more bytes to be read). The protocol proceeds to create

a notification (defined as YggEvent), adds the new member’s id

to the notification payload, asks the Runtime to deliver it to all

interested protocols and applications, and frees the payload (Fig. 2

lines 27 − 29).

Lastly, when the protocol processes a request (Fig. 2 line 35), it

first certifies that the received request is valid (according to the

protocol logic), prepares the reply (adding all known members

to the reply payload) and delivers the reply to the corresponding

protocol, freeing the payload in the end (Fig. 2 lines 36 − 42). This

is analogous to how previous events are handled.

Initialization. The initialization of themembership protocol (Fig. 2

line 48) is the one that differs the most from Algorithm 1. This is

because this function is also responsible to define the protocol con-

figuration for the Yggdrasil Runtime. We named this configuration:

protocol definition (or proto_def). The functions begins by ini-

tializing the protocol state (Fig. 2 lines 49 − 52). It then creates a

protocol definition, that contains the protocol’s numeric identifier,

its name, state, and a function to release the state (Fig. 2 line 54). Fi-

nally, it defines the notifications produced by this protocol, that can

be consumed by any other protocol or applications (Fig. 2 line 55).

The function proceeds to register event handlers that the proto-

col has (Fig. 2 lines 57 − 59). This will signal the Yggdrasil Runtime

to register the protocol in the Protocol Executor. Alternatively, the

protocol can register a main loop function to signal the desire to ex-

ecute in an independent execution thread. The main loop function

of a protocol will be provided with the protocol’s event queue and

state, and is responsible to retrieve events from the event queue

and multiplex them by type, calling the corresponding event han-

dlers. This provides more flexibility to the developer to implement

complex behaviors in her protocol. We omit the implementation of

this function due to lack of space.

1

24 22
20

9
6

5
16

1011

4

2
18

8

13 12

14
15

7

19

17

23

21

3

Figure 3: Experimental Configuration.

Finally, the initialization proceeds to setup the announce timer

event for its periodic task (Fig. 2 lines 61 − 66); and returns the

protocol definition to be processed by the Yggdrasil Runtime.

5 EXPERIMENTAL EVALUATION
In this section we present our experimental evaluation of Yggdrasil

to complement and demonstrate that distributed protocols and

applications can be implemented and executed within Yggdrasil

with minimal effort and performance overhead. The evaluation

is divided in two parts: In the first, we experimentally evaluate

implementations of three different classes of distributed protocols

and simple demo applications that exercise them using Yggdrasil.

In the second, we measure the overhead of events (in particular

messages) passing through the event queues of Yggdrasil.

5.1 Protocols Performance in Yggdrasil
We have implemented three classes of protocols for wireless ad hoc

networks (and demo applications that exercise them) in Yggdrasil.

These include: i) a simple broadcast protocol based on flooding (sim-

ilar to the one discussed in [16] for wired networks); ii) a popular
routing protocol for wireless ad hoc networks, the B.A.T.M.A.N. (V4)

routing protocol [13]; and iii) an aggregation protocol, GAP [8].

The Yggdrasil demo applications were deployed in a real testbed

composed by a fleet of 24 Raspberry Pis 3 - Model B, executed for a

period of 10 minutes, and evaluated relevant performance metrics

for each protocol class. The devices were scattered through our

department building across two hallways (each with approximately

30m) and rooms as depicted in Figure 3. We also note that some

devices were positioned near access points and other devices fre-

quently polluting the wireless environment. Each demo application

produces logs related to the protocol it is exercising, which were

post-processed after all experiences had concluded. In the following

we briefly describe each application and protocol and discuss the

results in Figure 4.

Broadcast Protocol. The application that exercises the broadcast

protocol operates as follows: every two seconds, each process in-

dependently and randomly decides with a probability of 50% to

broadcast a message containing the identifier of the process and a

unique monotonic identifier by issuing a request to the broadcast

protocol. All nodes register to a log messages disseminated by them

and messages received from the network.

The broadcast protocol is fairly simple. It first retrieves the mes-

sage to be disseminated from the request, delivers it to the applica-

tion, and schedules the message for transmission with a jitter, as to

avoid broadcast storms [30]. Messages delivered are stored in a list

to ensure at most once delivery semantics and garbage collected

2133

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

D
e

liv
e

re
d

 M
e

s
s
a

g
e

s
 (

%
)

C
D

F

Nodes (%)

(a) Broadcast Protocol: Delivery Ratio (CDF).

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 all

D
e

liv
e

ry
 R

a
ti
o

 (
%

)

Sender Node
Yggdrasil-BATMAN Daemon-BATMAN

(b) Routing Protocol: Comparison of Delivery Ratio per
Node.

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 0 100 200 300 400 500 600

Time (s)

Computed Aggregated Value
Target Value

(c) Aggregation Protocol: Precision.

Figure 4: Performance Evaluation of Distributed Protocols.

(after a long enough period of time) by a periodic task. The protocol

is implemented with approximately 200 lines of C code.

Performance Results. In this experiment we consider as per-

formance metric the delivery rate of broadcast messages (i.e., the

fraction of nodes that deliver a given message). Figure 4a reports

our results in the form of a commutative distribution function (CDF)

that shows the percentage of messages (in the y-axis, note that it

is in logarithmic scale) in function of the fraction of nodes that

delivered it (in the x-axis). The results show that the large major-

ity of disseminated messages (in total there were approximately

3, 500 messages disseminated) were delivered by every node. Only

a small fraction, below 10%, of messages were delivered by fewer

nodes. This however is not surprising, since collisions in the wire-

less medium still happen, despite the transmission delays employed

by the protocol to mitigate this effect.

Routing Protocol. The application that exercises the routing pro-

tocol operates akin to the previous one. It decides to transmit a

message with a probability of 50% every two seconds, to a randomly

chosen node out of the 23 possible destinations (nodes do not send

messages to themselves) and requests the B.A.T.M.A.N. protocol

to deliver it to the correct destination. A variant of this applica-

tion was also used to exercise a reference implementation of the

B.A.T.M.A.N. (also written in C) that operates as a linux daemon

(found in https://www.open-mesh.org/projects/open-mesh/wiki).

In both applications, each node logs all messages sent and received.

The operation and specification of the B.A.T.M.A.N. protocol can

be found in [29]. Our implementation performs some simplifica-

tions regarding the original specification, which do not compromise

the operation of the protocol. In particular, we represent the proto-

col’s sliding window (used to compute routes) in an array of shorts,

rather than a bit mask; and ignore aspects to support gateways and

external networks. This totals in less than 500 lines of C code. An

informal comparison with the reference implementation reveals,

after a careful analysis of the code, that the reference implementa-

tion represents the core logic of the protocol in almost 4 times more

lines of code (roughly 2, 000 lines) than our own. This is mostly

due to the daemon having to deal with every aspect of the pro-

tocol’s operation, from the network interface management to the

serialization of messages into network buffers.

Performance Results. In this experimental comparison wemea-

sure the fraction of messages sent by each node that were effectively

received at their destination. Figure 4b reports the delivery ratio

per individual node in our deployment, using each of the routing

alternatives, as well as the average delivery ratio for all nodes (the

final pair of columns labeled all). We note that in each experiment

there were approximately 3, 500 messages sent, with each node

transmitting close to 150 messages. The results show that both

implementations present very similar performance, validating that

Yggdrasil can simplify the development of distributed protocols.

In fact, when considering the average delivery ratio, our imple-

mentation surpasses the B.A.T.M.A.N. daemon by 3%. We note that

this difference is most probably caused by wireless interference.

Note that both implementations of the protocol route messages

using unicast messages, which benefit from collision-avoidance and

retransmission mechanisms implemented at the MAC layer, which

justifies why routing is less affected by collisions in the wireless

medium when compared with the broadcast protocol.

Aggregation Protocol. The application that exercises the aggre-

gation protocol periodically (every second) queries GAP [8] for the

estimate of the aggregation result. GAP is configured to compute

the average aggregate function. The input values for the aggrega-

tion are statically configured to be each node’s identifier (a number

from 1 to 24), which implies that the correct computed average

value is 12.5. GAP is configured to transmit periodic updates of

its local estimate of the aggregate value (and other information

related to the protocol’s operation) every two seconds (while the

estimate is not considered stable). GAP requires a node to act as a

root node for a tree established by the protocol. A random node

was selected for this purpose (node 5). Furthermore, the application

also configures a discovery protocol enriched with a fault detection

mechanism to provide GAP with the local neighborhood.

More details on the operation of GAP can be found in the original

paper [8]. Our implementation follows the complete protocol as

specified by the authors. However, the authors propose different

policies to deal with the management of estimates received from

neighbors. Our implementation only supports the proposed default

policy, which maintains all estimates from neighbors as long as

they are not suspected of failure. The protocol was implemented in

less than 400 lines of C code.

Performance Results. Figure 4c reports the obtained results,

only at the root node, where we depict the estimate of the aggre-

gated value over time (we remind the reader that all experiments

were conducted for a period of 10 minutes). For the convenience

of the reader we also present a green solid line that represents the

2134

https://www.open-mesh.org/projects/open-mesh/wiki

Table 1: 95th percentile delay of sending a message in milliseconds.

A:W/out Yggdrasil B:W/Yggdrasil C:W/Idle D:W/Idle Intercept

Raspberry Pi 0.110729 0.182161 0.186275 0.211146
GRiSP 1.983731 3.137988 3.155992 3.418891

target (i.e., correct) value. This allows to infer the precision of the

aggregation process in the root node. The results show that for the

first few hundreds of seconds of the experiment, the root node has

an estimate that only deviates from the correct value in approxi-

mately 1.7 units. This value then fluctuates around the 250 seconds

mark and get much closer to the correct value (a difference as small

as 0.25 units) for the remainder of the experiment. The protocol is

unable to achieve the correct value, due to frequent loss of messages

in a segment of the ad hoc network. This clearly shows the practi-

cal benefits of employing tools such as Yggdrasil for validation of

solutions in ad hoc networks, that allows to run experiments on

real settings instead of relying solely on simulation [12, 33].

5.2 Overhead Evaluation
To measure the overhead generated by the use of Yggdrasil, we

have conducted an experiment where we measured the amount of

time required for a message to be sent to the network (i.e., request

the kernel to send the message to the network) in several configu-

rations. In the following we detail our experimental methodology

and obtained results.

Experimental Methodology. In this experiment we have devel-

oped four variants of a simple application in C code, that sends a

message to the network every second. This application is executed

for more than 10, 000 seconds (slightly bellow 3 hours), sending a

total of 10, 000 messages. The application variants are the following:

i) in variant A the application is not implemented using Yggdrasil,

as such it sends messages by directly using the OS kernel; ii) in
variant B the application is implemented using Yggdrasil. The ap-

plication delegates the functionality of sending the message to the

Dispatcher Protocol; iii) variant C is similar to the previous having

the application executing concurrently with an idle protocol; and

iv) variant D: the idle protocol intercepts the Dispatcher protocol’s
event queue processing all messages sent by the application.

These experiments were executed in one of the Raspberry Pis,

which has a four core CPU with a clock rate of 1.2Ghz and 1GB of

memory; and on an embedded system board named GRiSP in its

first version (https://www.grisp.org), having a microchip CPU with

a clock rate of 300Mhz and 64MB of memory. This board executes

a Real Time Embedded Multiprocessor System (RTEMS), which

is based on an unix system that is directly linked (as a collection

of libraries) with the application to be executed in the board (also

implemented in C). For each variant we logged a timestamp imme-

diately before the creation of the message, and immediately after

the message was delivered to the network. We correlated these

data points for each message offline. During each experiment, the

CPU and memory consumptions were also gathered using standard

profiling tools (e.g., perf, top, and built-in tools in RTEMS).

Experimental Results. Table 1 reports the 95th percentile delay

of sending a message in milliseconds for each of our experiments

detailed above. The results show that employing Yggdrasil (in vari-

ant B) in a Raspberry Pi incurs in an increased delay of around

0.07 milliseconds, whereas in a GRiSP board, the increased delay is

around 1.15 milliseconds. The overhead increase is expected, since

additional processing is required.

Executing another protocol concurrently (variant C) results in
a relatively small overhead that is not significant (0.004 and 0.02
milliseconds in the Raspberry Pi and the GRiSP respectively). When

the protocol intercepts the message (variant D) it results in an

increased delay of 0.025 milliseconds in a Raspberry Pi and 0.35
milliseconds in a GRiSP. The overhead is caused by the intercept

behavior requiring two additional memory copies for the message

to reach the Dispatcher.

Regarding the CPU andmemory consumptionswe have observed

few variations of values in our experiments. The CPU consumption

in the Raspberry Pi was observed to be around 0.01%, while in

the GRiSP board it was observed to be approximately 1%. The low

CPU usage is expected has most of the components in Yggdrasil

are idly waiting for events (i.e., not performing active waits). The

memory consumption was observed to be in both platforms approx-

imately 700 KiB (1 KiB = 1024 bytes) of resident memory (this value

does not take into account the memory footprint of RTEMS in the

GRiSP board). This implies that the memory footprint of Yggdrasil

is relatively low (bellow 1 MB).

Overall, our results show that Yggdrasil presents a very modest

overhead considering the functionalities it provides to protocols

and applications and the gains in terms of implementation effort

for developers.

6 RELATEDWORK
There have been other frameworks and middleware solutions pro-

posed to support the development of distributed protocols/systems

and their execution. Yggdrasil, to the best of our knowledge, is the

first to combine a simple and generic development environment for

wireless ad hoc networks with the ability to be executed in general

purpose operating systems on commodity devices.

Yggdrasil shares some design principles with previously pro-

posed protocol composition frameworks, in particular, its event-

driven programming model. Frameworks, such as Appia [26], Ho-

rus [38], Eva [3], and Cactus [24] were original designed considering

wired environments, and lack low-level communication primitives

that allow processes to easily (without resorting to IPs) exchange

messages on a wireless ad hoc network.

Lightweight operating systems, such as TinyOs [17], Impala [18],

and Contiki [9], are used to build wireless ad hoc systems. Never-

theless, these specialize in wireless sensor networks, and target

small families of hardware, failing to be general purpose.

Middlewares that provide communication among processes in ad

hoc networks have also been proposed. These include STEAM [23]

and EMMA [28]. However, their focus is solely providing commu-

nication primitives based on point-to-point and pub-sub models,

instead of a generic programming model.

More distant from the goals of this work, and reacting to the in-

creasing popularity of edge computing [35] and fog computing [22],

2135

https://www.grisp.org

other frameworks and solutions to support the development of

applications in these contexts have recently been proposed, mostly

in the field of Internet of Things (IoT) [40]. These include solutions

and systems such as Stack4Things [19], and ENORM [39]. Nonethe-

less, these solutions do not focus on wireless ad hoc networks, nor

on building the fundamental support to leverage those networks to

perform complex tasks cooperatively.

7 CONCLUSION
In this paper we address the challenges related with developing,

implementing, and executing, distributed applications and proto-

cols for wireless ad hoc networks that leverage commodity devices

and general purpose operating system, while supporting resource

constrained devices. We have presented a novel framework and

middleware runtime, named Yggdrasil, that offers key abstractions

and a programming model that is highly suitable for developing dis-

tributed protocols. We have developed a prototype of Yggdrasil in

the C language, and have extensively evaluated it by implementing

three different classes of distribute protocols. These include broad-

cast, routing, and aggregation protocols. We have experimentally

validated our implementations and have shown that in general,

Yggdrasil provides abstractions that allow to implement these pro-

tocols with a lower amount of effort (when compared with stand

alone implementations), and that the execution of protocols using

Yggdrasil presents adequate performance. We expect Yggdrasil to

be an enabler of novel solutions, and assist in developing novel IoT

and smart cities/spaces applications.

As future work, we plan to enrich Yggdrasil to support other

network abstractions and to improve support to autonomic recon-

figuration of individual protocols and protocol stacks in response

to dynamic runtime conditions.

REFERENCES
[1] M. Akter, A. Islam, and A. Rahman. 2016. Fault tolerant optimized broadcast

for wireless Ad-Hoc networks. In 2016 International Conference on Networking
Systems and Security (NSysS). 1–9.

[2] C. Ameixieira et al. 2014. Harbornet: a real-world testbed for vehicular networks.

IEEE Communications Magazine 52, 9 (2014), 108–114.
[3] F. Brasileiro, F. Greve, M. Hurfin, J. . Le Narzul, and F. Tronel. 2001. EVA: an

event-based framework for developing specialised communication protocols. In

Proceedings IEEE International Symposium onNetwork Computing andApplications.
NCA 2001. 108–119.

[4] C. Cabrera, G.White, A. Palade, and S. Clarke. 2018. The Right Service at the Right

Place: A Service Model for Smart Cities. In 2018 IEEE International Conference on
Pervasive Computing and Communications (PerCom). 1–10.

[5] Jen-Yeu Chen, G. Pandurangan, and Dongyan Xu. 2006. Robust Computation of

Aggregates in Wireless Sensor Networks: Distributed Randomized Algorithms

and Analysis. IEEE Transactions on Parallel and Distributed Systems 17, 9 (9 2006),
987–1000.

[6] Cisco. 2016. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast

Update. https://tinyurl.com/zzo6766.

[7] Pedro Ákos Costa and João Leitão. 2018. Practical Continuous Aggregation in

Wireless Edge Environments. In Proc. of 37th IEEE International Symposium on
Reliable Distributed Systems (SRDS’18). IEEE, Salvador, Brazil.

[8] Mads Dam and Rolf Stadler. 2005. A generic protocol for network state aggrega-

tion. In Proc. Radiovetenskap och Kommunikation (RVK). Citeseer, 14–16.
[9] A. Dunkels, B. Gronvall, and T. Voigt. 2004. Contiki - a lightweight and flexible

operating system for tiny networked sensors. In 29th Annual IEEE International
Conference on Local Computer Networks. 455–462.

[10] Rachid Guerraoui and Luís Rodrigues. 2006. Introduction to Reliable Distributed
Programming. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[11] G. T. C. Gunaratna, P. V. N. M. Jayarathna, S. S. P. Sandamini, and D. S. De Silva.

2015. Implementing wireless Adhoc networks for disaster relief communication.

In 2015 8th International Conference on Ubi-Media Computing (UMEDIA). 66–71.
[12] Teerawat Issariyakul and Ekram Hossain. 2010. Introduction to Network Simulator

NS2 (1st ed.). Springer Publishing Company, Incorporated.

[13] David Johnson, Ntsibane Ntlatlapa, and Corinna Aichele. 2008. Simple pragmatic

approach to mesh routing using BATMAN. In 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing Countries.

[14] J. Leitão, P. Á. Costa, M. C. Gomes, and N. Preguiça. 2018. Towards Enabling Novel
Edge-Enabled Applications. Technical Report. https://arxiv.org/abs/1805.06989

[15] João Leitão, José Pereira, and Luis Rodrigues. 2007. Epidemic broadcast trees. In

Proc. of SRDS’07. IEEE.
[16] João Leitão, José Pereira, and Luis Rodrigues. 2007. HyParView: A membership

protocol for reliable gossip-based broadcast. In Proc. of DSN’07. IEEE.
[17] P. Levis et al. 2005. TinyOS: An Operating System for Sensor Networks. In

Ambient Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg, 115–148.

[18] Ting Liu and Margaret Martonosi. 2003. Impala: A Middleware System for

Managing Autonomic, Parallel Sensor Systems. SIGPLAN Not. 38, 10 (June 2003),
107–118.

[19] F. Longo, D. Bruneo, S. Distefano, G. Merlino, and A. Puliafito. 2015. Stack4Things:

An OpenStack-Based Framework for IoT. In 2015 3rd International Conference on
Future Internet of Things and Cloud. 204–211.

[20] Samuel Madden et al. 2002. TAG: A Tiny AGgregation Service for Ad-hoc Sensor

Networks. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 131–146.
[21] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. 2005.

TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on database systems (TODS) 30, 1 (2005), 122–173.

[22] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018. Fog

Computing: A Taxonomy, Survey and Future Directions. In Internet of Everything:
Algorithms, Methodologies, Technologies and Perspectives. Springer Singapore,
Singapore, 103–130.

[23] R. Meier and V. Cahill. 2002. STEAM: event-based middleware for wireless ad hoc

networks. In Proceedings 22nd International Conference on Distributed Computing
Systems Workshops. 639–644.

[24] S. Mena, X. Cuvellier, C. Gregoire, and A. Schiper. 2003. Appia vs. Cactus:

comparing protocol composition frameworks. In Proc. of SRDS’03. 189–198.
[25] H. Miranda, S. Leggio, L. Rodrigues, and K. Raatikainen. 2006. A Power-Aware

Broadcasting Algorithm. In 2006 IEEE 17th International Symposium on Personal,
Indoor and Mobile Radio Communications. 1–5.

[26] H. Miranda, A. Pinto, and L. Rodrigues. 2001. Appia, a flexible protocol kernel

supporting multiple coordinated channels. In Proc.of ICDCS’01. 707–710.
[27] H. Moniz, N. F. Neves, and M. Correia. 2013. Byzantine Fault-Tolerant Consensus

in Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing 12, 12

(Dec 2013), 2441–2454.

[28] Mirco Musolesi, Cecilia Mascolo, and Stephen Hailes. 2005. EMMA: Epidemic

Messaging Middleware for Ad Hoc Networks. Personal Ubiquitous Comput. 10, 1
(Dec. 2005), 28–36.

[29] Axel Neumann, Corinna Aichele, Marek Lindner, and Simon Wunderlich. 2008.

Better Approach To Mobile Ad-hoc Networking (B.A.T.M.A.N.). Internet-Draft draft-
openmesh-b-a-t-m-a-n-00. Internet Engineering Task Force. https://datatracker.

ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00

[30] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. 1999. The

Broadcast Storm Problem in a Mobile Ad Hoc Network. In Proceedings of the 5th
Annual ACM/IEEE International Conference on Mobile Computing and Networking
(MobiCom ’99). ACM, Seattle, Washington, USA, 151–162.

[31] C. E. Perkins and E. M. Royer. 1999. Ad-hoc on-demand distance vector routing.

In Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA ’99.
Second IEEE Workshop on. 90–100.

[32] R. Ramanathan and J. Redi. 2002. A brief overview of ad hoc networks: challenges

and directions. IEEE Communications Magazine 40, 5 (2002), 20–22.
[33] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.

In Modeling and Tools for Network Simulation. Springer Berlin Heidelberg, Berlin,

Heidelberg, 15–34.

[34] Marcelo G. Rubinstein et al. 2006. A Survey on Wireless Ad Hoc Networks. In

Mobile and Wireless Communication Networks. Springer US, Boston, MA, 1–33.

[35] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge Computing: Vision and

Challenges. IEEE Internet of Things Journal 3, 5 (10 2016), 637–646.
[36] João A. Silva, João Leitão, Nuno Preguiça, João M. Lourenço, and Hervé Paulino.

2016. Towards the Opportunistic Combination of Mobile Ad-hoc Networks with

Infrastructure Access. In Proceedings of the 1st Workshop on Middleware for Edge
Clouds & Cloudlets (MECC ’16). ACM, New York, NY, USA, Article 3, 6 pages.

[37] Gyula Simon et al. 2004. Sensor Network-based Countersniper System. In Proceed-
ings of the 2Nd International Conference on Embedded Networked Sensor Systems
(SenSys ’04). ACM, Baltimore, USA, 1–12.

[38] Robbert Van Renesse, TakakoM. Hickey, and Kenneth P. Birman. 1994. Design and
Performance of Horus: A Lightweight Group Communications System. Technical

Report. Cornell University, Ithaca, NY, USA.

[39] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. 2017. ENORM: A

Framework For Edge NOde Resource Management. IEEE Transactions on Services
Computing (2017), 1–1.

[40] G.White, A. Palade, C. Cabrera, and S. Clarke. 2018. IoTPredict: Collaborative QoS

Prediction in IoT. In 2018 IEEE International Conference on Pervasive Computing
and Communications (PerCom). 1–10.

2136

https://tinyurl.com/zzo6766
https://arxiv.org/abs/1805.06989
https://datatracker.ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00
https://datatracker.ietf.org/doc/html/draft-openmesh-b-a-t-m-a-n-00

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32

 D:20200106120622
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

