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Abstract—Edge computing offers support for latency-
constrained applications, by replicating data in the edge. Edge
storage systems need to adopt both partial replication, as only
data of interest needs to be replicated, and weak consistency
models, to avoid the overhead and latency induced by the
coordination mechanisms of strong consistency models. In this
context, session guarantees are a powerful tool that can be
used to simplify the design of edge applications. This paper
presents ENGAGE, a storage system that offers efficient support
for session guarantees in a partially replicated edge setting.
To achieve this, ENGAGE combines the use of vector clocks
and distributed metadata propagation services with a payload
propagation scheme tailored for the edge. We have implemented
ENGAGE and evaluated its performance experimentally. The
results show that, when compared with previous proposals, the
combination of techniques employed by ENGAGE reduce both the
number of false dependencies, that can slow down the system,
and the signaling overhead, while improving the freshness of data
exposed to clients.

I. INTRODUCTION

Nowadays, numerous applications have clients running on
the edge of the network relying on cloud infrastructures for
computation offloading and storage [31]. Unfortunately, the
high network latency between clients and data centers can im-
pair novel latency-constrained applications such as augmented
reality [32], highly-interactive mobile applications, among oth-
ers [20]. Edge computing has emerged as a potential solution
to circumvent this problem. To unleash its full potential, edge
nodes must replicate data that is frequently used. However,
because edge nodes have limited resources, full replication
is infeasible. Therefore, any edge storage service needs to
support partial replication. Additionally, the bandwidth of
network links at the edge can be highly variable, and is
generally much lower than the bandwidth of the dedicated
links that connect datacenters [33]. As such, edge applications
should take these limitations into account in order to efficiently
disseminate information across all replicas. Not doing so may
cause the lower bandwidth of edge nodes to become the
bottleneck of the system, as was previously highlighted in [7].

Furthermore, there is also evidence that edge storage should
support weak consistency models [13], [25] since strong
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consistency models require coordination among replicas when
updates are performed, which increases latency and can be-
come impractical when the number of replicas grows.

In a seminal work, Terry et al. [34] have introduced the
notion of session guarantees, a set of well defined semantics
that may be used to simplify the design of distributed ap-
plications using weakly consistent stores. Session guarantees
are relevant in scenarios where a client may access different
replicas of a weakly replicated system. In particular, if a client,
after performing a number of read and/or write operations on
a given (origin) replica, needs to access another (destination)
replica, it may observe a state that is inconsistent with its
causal past: updates that the client has performed or observed
on the origin replica may not yet have been applied at
the destination replica. Depending on the semantics of the
application, the client may be forced to wait for some (or
all) of these operations to be applied at the destination replica
before being served. This ensures the correctness of the results
and avoids data anomalies that can be hard for application
developers to predict and tackle.

In [34], the authors have also suggested mechanisms to
enforce session guarantees that rely on the use of version
vectors [18], a form of vector clocks [9]. These mechanisms
are only efficient in settings that use full replication, where all
updates are propagated to all replicas. In systems that adopt
partial replication, the execution of an operation in a replica
may be delayed when it depends on an operation that will
not be received in that replica. Avoiding this problem requires
replicas to maintain and periodically exchange large amounts
of metadata (e.g., forcing all messages to carry a vector clock
for each shard in the system).

As such, with partial replication, the use of vector clocks
may impair visibility times, i.e., the time it takes for an update
to become visible in remote replicas. This limitation is of
significant concern for edge applications, where low visibility
times are highly desirable.

The challenges of providing low visibility times with small
metadata have been recognized in the literature [4], [21].
To address these challenges, the abstraction of a distributed
metadata service has been recently introduced [4]. A metadata
service is a helper service that instructs replicas regarding the
order by which they should apply remote updates without
violating a given consistency criteria. To the best of our
knowledge, existing metadata services, such as Saturn [4],
offer only causal consistency and have no support for (in-
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(a) Remote Operation Latency (b) Visibility Time

Fig. 1: Remote Operation Latency and Visibility Times.

dividual or combinations of) session guarantees. Therefore,
they may force clients that have weaker requirements to suffer
unnecessary delays when performing remote reads.

The dichotomy above is illustrated in Figures 1a and 1b
that show, respectively, the remote operation latency and the
visibility times in two separate systems. One of them uses
vector clocks (Bayou [34]) and the other uses a metadata
service (Saturn [4]), with both configured to provide causal
consistency. We postpone a detailed description of the exper-
imental setup to Section IV, presenting here just the required
information to understand the results. We consider a partially
replicated system and clients that have a preferential replica
(typically the nearest one). By default, clients perform reads
and writes on their preferred replica unless they need to access
a data object that is not replicated there, in which case they
perform a remote operation.

When a client is forced to contact another replica, it
must wait until the replica is consistent with its past. This
waiting time can contribute substantially to delay the remote
operation. Fig. 1a shows the delays experienced by clients
when performing a remote operation. In the x axis we vary
the average time between two consecutive operations. The
larger this think time, the more likely it is that updates in the
causal past of the client have already been applied when the
client performs a remote operation. Systems based on vector
clocks have fine grained information about which updates the
client has observed and that need to be locally applied in
order to avoid violating the client consistency requirements.
This allows replicas to execute operations originally executed
on remote replicas faster, hence providing faster replies for
clients, particularly when a client has just migrated from
another replica. Unfortunately, systems based solely on a
metadata service do not keep detailed information regarding
the causal past of each client; they have to conservatively wait
for all updates that may have been observed by the client to be
applied. Thus, these systems are unable to leverage the think
time of the client and are penalized by depicting a (constant)
high remote operation latency.

Fig. 1b shows the operation visibility times for both classes
of systems. When using vector clocks, before executing an
operation, a replica needs to wait until all operation’s depen-
dencies have been applied. As a replica might not receive some
of the operations, it needs to receive metadata from other repli-

cas to find out that no operation is missing. This information
can be broadcasted periodically by all replicas. The results
show that the visibility time depends on the frequency of
broadcast, rising sharply as the period of broadcast increases.
High frequency broadcasts lead to low visibility time at the
cost of an increasing number of (often redundant) exchanged
messages. Metadata services circumvent this problem, offering
low visibility times without the need for metadata broadcasts.

The goal of this paper is to derive a strategy that can achieve
the best of both worlds, i.e., to combine low visibility times
and efficient support for clients performing remote operations
using different session guarantees, while also optimizing the
use of the limited bandwidth of edge nodes. We present EN-
GAGE, a storage system that achieves this goal by combining,
in a synergistic manner, the use of vector clocks and distributed
metadata propagation services to offer efficient support for ses-
sion guarantees in partially replicated edge storage, leveraging
the hierarchical nature of the metadata service to offload the
cost of message dissemination to the high-performance data-
center links. We provide an extensive evaluation of ENGAGE
in an emulated edge environment, comparing it with a system
based on vector clocks (Bayou [34]) and a system based on
metadata services (Saturn [4]), using different combinations
of the session guarantees proposed in [34].

II. BACKGROUND AND RELATED WORK

A. Background

Weakly consistent replication schemes have been intro-
duced as a way to circumvent the performance bottlenecks
associated with strong consistency, improving the availability
of replicated systems [5]. In strongly consistent systems all
updates need to be serialized; this requires the use of a single
primary replica or the use of a consensus protocol [27]. While
strongly consistent systems may block, weakly consistent
systems allow updates to be performed concurrently, without
coordination across replicas, offering higher availability.

Session Guarantees Unfortunately, without any additional
support, weakly consistent systems allow applications to ob-
serve inconsistent states. For instance, a client may perform an
update at a given replica and, later, be forced to contact another
replica and observe a state where its update is missing. Ex-
perience has shown that weak consistency makes application
development difficult [2]. In [34], session guarantees have been
introduced as a way to simplify the application development
when relying on weakly consistent replicated datastores. This
seminal paper identifies four relevant properties for a client
accessing a weakly consistent datastore, namely, Read Your
Writes (RYW), Monotonic Reads (MR), Writes Follow Reads
(WFR), and Monotonic Writes (MW). These properties can be
matched to the application semantics and define a framework
where the programmer can specify which properties should
be ensured for each individual operation, such that the system
maximizes the availability while still preserving high-level
consistency. When all these guarantees are combined, the
system offers causal consistency [1].
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Vector Clocks Version vectors [17], [18], also known as
vector clocks [9], are a popular mechanism to keep track of
dependencies among update operations and identify those that
are concurrent. Each replica keeps a sequence number that it
uses to identify updates performed locally. The vector clock
keeps one entry for each replica, with the value of the last
update that was received from that replica. Vector clocks can
also be used to enforce session guarantees [34].

Limitations of Vector Clocks Vector clocks are able to keep
track of this partial order accurately, for a single object. To
keep track of all causal dependencies accurately, it would
be necessary to store and exchange the vector clocks for
all objects in all messages [3] or, alternatively, a matrix
clock [30]. Both approaches are extremely expensive and
impractical on the edge. A common strategy to limit the size
of metadata is to use a single vector clock for the entire
object store. This creates what is known as false dependencies,
i.e., scenarios when the operation of a client may be stalled
because of independent operations performed by other clients
on unrelated objects. The use of a single vector clock for the
entire data store also performs poorly with partial replication.
Assume that the read set of a client is captured by clock
V R = [1, 0, 0] and that this client attempts to read some
object from replica R2 whose clock is still [0, 0, 0]. The clocks
indicate that the client has observed some update that has not
yet been applied to R2. Unfortunately, there is no way for R2

to infer if the missing update corresponds to some object that is
replicated locally or to an object that is replicated somewhere
else (and will never be received).

Metadata Services Distributed metadata services [4] have
been proposed as a solution to provide low visibility time in
partial replicated systems while keeping the size of metadata
very small. When an update is generated at a given replica,
this information is propagated to the metadata service, which
will later tell the relevant replicas when it is safe to apply the
update. Metadata services have proven to be an interesting
mechanism to provide low visibility times, but offer only
causal consistency. Solution to extend these services to weaker
consistency models, such as session guarantees, have not
been explored. In this work, we present a novel protocol,
which is able to combine the benefits of vector clocks and
metadata services, avoiding their individual limitations and
allowing efficient support for partial replication in the edge
while offering different session guarantees.

B. Related Work

Session Guarantees Session guarantees were first introduced
in Terry et al. [34], which presented a replicated storage
system, Bayou, that leverages on version vectors to support the
different session guarantees. In this system, clients keep two
version vectors, one to record their writes and another to record
the writes that are relevant to their reads. These version vectors
can then be used to check if a replica contains all the necessary
operations to satisfy the client’s required session guarantees.
Details about the dissemination of write operations are given

in a later work [28], where an anti-entropy protocol based
on periodic pair-wise communications is employed. In this
protocol, periodically, each replica requests another replica’s
version vector, and uses it to check which operations the
other replica is missing, sending them in the received order.
While supporting diverse network topologies (such as low-
bandwidth links or unreliable networks), this protocol suffers
from slow update propagation, sacrificing data visibility times.
In contrast, as low latency is a key requirement for today’s
edge applications, our system strives to minimize visibility
times, by propagating operations across replicas in a reactive
way instead of leveraging on anti-entropy. Furthermore, we
propose a novel mechanisms to propagate control information
that allows remote replicas to execute operations faster.

Edge Storage Several works have addressed edge storage, but
few have addressed the problem of latency when considering
session guarantees. EdgeCons [15] and DPaxos [26] propose
efficient consensus algorithms for the edge that target strongly
consistent systems. As we discussed previously, the use of
strong consistency will lead to performance penalties when
the number of replicas grows, which is expected in edge datas
tores. SessionStore [24] is a data store for edge applications
that supports session guarantees. However, instead of opti-
mizing for latency, SessionStore uses the semantics to reduce
the amount of data that needs to be shipped before serving
a client. SessionStore is based on PathStore [23], which is
a hierarchical eventual-consistent object store built on Cloud-
Path [25], a system that replicates application data on-demand.
Because data is shipped on demand, clients can experience
high latency, which our solution avoids. Similarly to ENGAGE,
FogStore [13] and DataFog [14] aim at offering low latency
with different semantics. However, in FogStore and DataFog,
the semantics drive how many replicas need to be read/written
in order to execute a given operation, while ENGAGE always
serves requests locally. Furthermore, the consistency criteria
supported by FogStore are not directly comparable with ses-
sion guarantees. In [22], the use of CRDTs [29] is suggested to
avoid the cost of strong consistency; however, the paper does
not address the problem of offering consistency to the clients
when they access different edge servers. Timeseries DBs [35]
focuses on establishing semantic specifications to handle fault
detection and providing diagnosis in IoT-based monitoring
systems for critical systems. Differently from our proposal,
Timeseries DBs is not focused on latency optimization.

III. THE ENGAGE SYSTEM

ENGAGE is a system that aims at combining low visibility
times and support for session guarantees, while avoiding the
costs of using matrix clocks and optimizing the use of available
bandwidth in edge nodes. It does so by combining, in a
synergistic manner, the use of vector clocks to keep track of
the read set and write set of clients, and the use of metadata
services to speed up the propagation of updates and decrease
bandwidth usage for edge nodes.
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Fig. 2: ENGAGE Architecture

A. System Model

Fig. 2 depicts the architecture of ENGAGE. We consider a
set of edge servers, fog nodes or cloudlets, that are used to
replicate data. We assume the number of cloudlets to vary
from a few dozens to one hundred. The system uses partial
replication, i.e., not every cloudlet replicates every object. In
this paper, we do not address data placement: the decision
of which cloudlets store each data object is orthogonal to
our work; we just assume that some data placement policy
is in place and that the assignment of data objects to cloudlets
is known by all cloudlets. Typically, data replicated in the
cloudlets will also be stored in on or more cloud datacenters
(which are placed as higher nodes in the tree), but this is not
necessary for the operation of ENGAGE.

ENGAGE clients have a preferred cloudlet, to which they
forward all requests. If the preferred cloudlet does not replicate
the target data object of an operation, the client must send
the request to the nearest replica that does (client migration).
Typically, the preferred cloudlet is selected based on the
network latency from the client to the cloudlet. If clients are
mobile, they may change their preferred cloudlet on-the-fly.

B. Extended Metadata Service (Overview)

Cloudlets are attached to an extended metadata service
that supports the propagation of updates and ensures they
become visible at other replicas, in an order that does not
violate causality. Contrary to systems such as Saturn, where
the metadata service is used exclusively to propagate metadata,
in ENGAGE we extend this service to additionally support the
propagation of the update payloads in a more efficient manner,
that takes into consideration the topological properties (e.g.,
link capacity) of the edge network.

The extended metadata service is implemented by a set of
cooperative servers, or extended metadata brokers, organized
in an acyclic graph (or tree). The leaf servers of the tree
are deployed at the edge cloudlets, i.e, every edge cloudlet
runs a local extended metadata broker that is used to convey
both metadata and data to, and from, remote cloudlets. The
extended metadata brokers that run as inner nodes of the

tree are placed strategically to optimize aggregation and data
dissemination. They can be deployed in cloud datacenters,
cloudlets with more resources, or even in some edge cloudlets
that are well placed in the network (in terms of connectivity
to other cloudlets).

C. Metadata

We assume that each cloudlet is linearizable [16], which
means that when one update becomes visible for a client, it
becomes visible for all clients of that cloudlet. Thus, each
cloudlet keeps a sequence number that is used to uniquely
identify updates that are performed locally on behalf of clients;
this sequence number is shared by all objects. For instance, if
client c1 makes an update on data object o1 and this update is
assigned sequence number x, the next update on that cloudlet
will be assigned sequence number x+1, even if it is performed
by some other client c2 on some other data object o2.

ENGAGE uses vector clocks to keep track of the updates
that are observed by clients. Multiple vector clocks, with one
entry per cloudlet, are maintained by ENGAGE as follows:

- For each object o that is replicated in a cloudlet i, a vector
clock V i

o is stored with the object. The vector clock captures
all updates in the causal past of that object.

- Each cloudlet i also keeps a cloudlet vector clock V i
∗ that

captures the state of the local database. This clock encodes the
highest sequence number of update operations executed from
each remote cloudlet.

- Finally, each client c keeps two vector clocks: V R
c , that

captures the past of all objects the client has read, and V W
c ,

that captures all write operations it has performed.

D. Performing Read and Write Operations

When a client performs a read or a write operation it
can specify one or more session guarantees to be ensured.
ENGAGE supports the session guarantees of the original Bayou
paper [34], namely: Read Your Writes (RYW), Monotonic
Reads (MR), Writes Follow Reads (WFR), and Monotonic
Writes (MW). From the point of view of the client operation,
ENGAGE offers no novel contribution.

On the server side, we employ a number of mechanisms
that effectively alter the original algorithm, to support multiple
objects that keep different clock values. When performing a
read or write operation on data object o using cloudlet i, the
client c provides its own V R

c , V W
c , and the desired session

guarantees for the operation. The cloudlet holds the request
until it is safe to execute. In order to check if the cloudlet is
in a state that is consistent with the guarantees specified by
the client, the cloudlet compares the value of its own vector
clock V i

∗ with the values of V R
c and V W

c as follows:
• If the client requests WFR or MR, it is safe to execute

the operation if V i
∗ ≥ V R

c .
• If the client requests MW or RYW, it is safe to execute

the operation if V i
∗ ≥ V W

c .
In the case of a read operation, the cloudlet sets V R

c =
MAX(V R

c , V i
o ), and returns the state of the object and the new

value of V R
c to the client. For a write operation, the cloudlet
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assigns a sequence number snb to the update, by incrementing
the local counter that serializes all updates. Then, it creates a
temporary update vector clock V up that has all entries set to
0 except its own entry i, which is set to snb. Next, it updates
several clocks as follows:

• It sets V i
∗ = MAX(V i

∗ , V
up).

• It sets V i
o = MAX(V i

o , V
up, V R

c , V W
c ).

• It sets V W
c = MAX(V W

c , V up).

After these updates, it returns the new value of V W
c to the

client. In parallel, it schedules the update, tagged with V i
o , to

be sent through the extended metadata service to the other
cloudlets that replicate o.

Note that, in practise, the client only needs to provide its
vector clocks when executing the first operation in a new
cloudlet after migrating. After the first operation, session
guarantees are assured without the client sending its vector
clock: when using RYW, the client executes operations on the
cloudlet, so the clients’ previous write operations are always
reflected on the cloudlet since the servers are linearizable;
when using MR, updates being applied in causal order com-
bined with the client being sticky, results in clients always
reading a version of the key that is greater or equal than the
previous version that the client has read.

E. Applying Remote Updates

In every replicated storage system, for an update executed
at a given replica to become visible globally, it needs to be
propagated to all other replicas that replicate the target object.

Here, we will describe how these updates can be applied
in causal order based on vector clock stability, which is a
common technique employed in causal replication systems [2],
[11], [12], [34], where each replica keeps a vector clock, with
one position per replica. This vector clock is used to verify
if all dependencies of a remote operation have been executed
locally, in order to make that operation visible and/or to check
if all operations in the causal history of a client have been
applied locally.

In ENGAGE, this technique would work as follows. When an
update performed at a replica orig, tagged with vector clock
V orig
o , is received at some other replica dest, it is put in a

list of pending updates and it remains there until both of the
following conditions are met:

• From all updates received from orig, the update has the
lowest sequence number.

• For all other entries i ̸= orig, we have V dest
∗ [i] ≥ V orig

o [i].

When these conditions are met, the update is applied to the
object and the cloudlet dest performs the following updates to
its own metadata:

• It sets V dest
∗ = MAX(V dest

∗ , V orig
o ).

• It sets V dest
o = MAX(V dest

o , V orig
o ).

However, using vector clock stability to apply remote up-
dates is not effective under partial replication. Imagine that
a cloudlet i receives a remote operation u which depends on
another operation u′. If u′ is an operation over an object not

replicated in i, it will never be received, and the cloudlet has
no way to know if it is suposed to receive it or not.

To solve this problem, nodes can, periodically, send to each
other the values of their cloudlet vector clocks. In this paper,
we call these metadata flush (MF) messages. These messages
generate additional traffic and make the remote update latency
a function of the period used to exchange them. Note that,
under partial replication, MF messages are necessary not only
to apply remote updates but also to serve remote operations
(i.e., supporting client migration).

F. The ENGAGE Extended Metadata Service

A key insight behind the design of ENGAGE is that a
metadata service, such as the one proposed in [4], can be
extended to perform multiple functions: it can be used to
instruct cloudlets to deliver remote updates (as proposed
in [4]), it can be used to disseminate updates themselves
and, with minimal additional overhead, it can also be used to
propagate MF messages, such that cloudlets can keep vector
clocks up-to-date, regardless of the objects they replicate.

Thus, we propose to connect all cloudlets through a dis-
tributed extended metadata service, inspired by Saturn [4]. The
medatada service is implemented by a set of servers, denoted
extended metadata brokers (or simply: brokers), that are dis-
tributed in different locations of the network that interconnects
the replicas, and can either be co-located with cloudlets and
data centers, or execute independently (as seen in Fig. 2). The
brokers are organized as an acyclic graph and each cloudlet
is connected to one of these brokers. Unlike Saturn, that only
propagates update labels (i.e., a scalar that uniquely identi-
fies an update), ENGAGE propagates two types of messages:
update notifications, that carry update operations with their
associated vector clocks, and metadata flush messages, which
only carry the vector clocks associated with update operations.

Update notifications are tuples associated with a concrete
update. They include the following fields ⟨UN, src, snb, oid,
payload, V src

oid ⟩, where src is the identifier of the cloudlet
where the update was originated, snb is the sequence number
assigned by src to the update, oid is the identifier of the object
that has been updated, payload is the update operation itself
and, finally, V src

oid is the vector clock assigned to the update
by the src cloudlet. Metadata flush messages are tuples that
include the following fields ⟨MF, VMF⟩, where VMF is a vector
clock that will be used to update the cloudlet vector clocks.

When a cloudlet processes a write request from a client
and a new update u is created, as explained in Section III-D,
the cloudlet also creates an update notification message that it
delivers to the local broker. When a broker receives an update
notification, it performs the following sequence of actions for
all tree edges e (except for the incoming edge):

• If the edge e is in the path from src cloudlet to another
cloudlet that replicates oid, it forwards the update noti-
fication eagerly on that edge. If there is a MF message
pending on that edge, it is piggybacked with the update
notification, cancelling any timeout associated with it.
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• Otherwise, it transforms the update notifications into a MF
message, by preserving the associated vector clock. The
resulting MF message is then scheduled to be propagated
asynchronously on that edge. If there is already another
MF message scheduled for transmission on the same edge,
both MF messages are merged into a single MF message,
with a vector clock that has is the maximum of both
clocks. If there was no other MF message pending on
edge e, a timer is started to propagate the MF message.

• When the timer associated with an edge expires, the
broker forwards the pending MF message.

When a MF message ⟨MF, VMF⟩ is received by a cloudlet
dest, either isolated or piggybacked with some update no-
tification message, the cloudlet dest uses VMF to update
V dest
∗ = MAX(V dest

∗ , VMF). Finally, when an update message
⟨UN, src, snb, oid, payload, V src

oid ⟩ is received by a cloudlet,
the acyclic layout of the extended metadata service guarantees
that every operation that could be a dependency has already
been delivered locally (either as a MF message or an update
message) and, as such, the update can be applied immediately
(or after its dependencies finish executing).

G. Payload Propagation

The design of ENGAGE allows it to support two different
strategies to propagate the update payload:

Broker-Assisted Payload Propagation: In this mode, which
we use as the default one, the payload of an update is
propagated in the metadata broker network as part of the
update notification message, as explained previously. Using
the metadata service to propagate update operations (and not
only their metadata) allows ENGAGE to optimize bandwidth
usage in an edge scenario, as discussed further in Section IV-E.

Direct Propagation: ENGAGE can also be applied to a more
traditional geo-replicated scenario, where replicas are data-
centers connected by a dedicated high-performance network.
In this scenario, propagating the payload of update messages
directly between datacenters can decrease visibility times,
while the extended metadata service ensures all replicas can
progress even with partial replication.

IV. EVALUATION

Our evaluation addresses the following research questions:
• What is the signaling cost of ENGAGE, in comparison

with Bayou [34]?
• How does ENGAGE perform in comparison with classical

vector clock approaches, such as Bayou, and with recent
metadata services, such as Saturn [4]?

• Can ENGAGE bring advantages to clients that exploit
session guarantees, decreasing their observed latency?

• Can ENGAGE be efficiently used in an edge scenario with
heterogeneous network links?

A. Experimental Setup

For the experimental evaluation, we implemented EN-
GAGE, Bayou, and Saturn over the Cassandra [19] distributed

database, which only offers eventual consistency, and using a
framework for building distributed protocols, Babel [10]. Since
the target of this work are edge scenarios, our implementation
of ENGAGE uses the Broker-Assisted Payload Propagation
presented in Section III-G. In Saturn, update labels are prop-
agated using the metadata service, while update payloads are
disseminated directly between replicas, as explained in [4].
Our implementation of Bayou, while following the original
article [34], has two modifications: i) Update operations
are propagated eagerly to remote replicas, instead of using
periodic anti-entropy synchronizations. This change does not
alter the protocol guarantees in any way, it simply speeds
up the propagation of operations, allowing us to make fairer
comparisons with the other solutions; ii) To allow progress
under partial replication, as explained in Section III-E, replicas
periodically send each other metadata messages containing
their vector clock values.

Experiments were run on the Grid50001 computing plat-
form, with each replica running in an individual machine with
an Intel Xeon Gold 5220, and 96GiB of memory. Clients were
executed on similar machines, but with multiple client threads
per machine, using the YCSB [6] benchmark tool. In order to
control the latency and bandwidth of the networks links, we
used the Linux Traffic Control2 tool.

Fig. 3 illustrates the settings used in the experimental
evaluation. We considered an edge scenario, where replicas
are distributed in four geographic locations (or regions), with
a main datacenter (numbered 1 to 4) and three edge replicas (5
to 16) per location. The bandwidth of edge replicas is limited
to 1Gbps of download and 500Mbps of upload. The dotted
lines represent the latency between replicas, with the latency
from the edge nodes to their local datacenter being 10ms.
The connections used by the ENGAGE and Saturn metadata
services are represented by the solid lines. To model the use
of partial replication, we partition the data across replicas, with
each data partition being represented by a letter.

While data placement is not the focus of our work, it has
an impact on the performance of partially replicated systems.
As such, we consider two distinct data placement schemes:

• a non-uniform locality-driven data placement (Fig. 3a),
where each data partition is replicated in every replica of
2 regions (e.g., partition A is placed at replicas 1, 5, 6,
7 of the Southwest region and on replicas 2, 8, 9, 10 of
the Northwest region), and not all regions replicate the
same number of data partitions. ENGAGE and Saturn’s
metadata services are setup in a way that minimizes
the number of hops between regions that replicate the
same data partitions. In this setting, we only use three
data partitions, allowing for a detailed analysis on how
visibility times of operations are affected by each system.

• an uniform data placement (Fig. 3b), in which we assign
a region to each partition, replicating it in the datacenter
and two edge nodes of that region, plus in an edge node of

1https://www.grid5000.fr
2https://man7.org/linux/man-pages/man8/tc.8.html
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Fig. 3: Experimental Settings

another region (e.g., partition A is replicated in replicas
1, 5, 6 of the Southwest region, and in replica 8 of a
different region). In this distribution, the load imposed
on the system is uniform, i.e. every update operation is
executed in exactly 3 nodes in the partition’s region, and
1 node in another region, leading to every edge replica
executing the same number of operations per second.

Unless stated otherwise, clients behave as follows: each
client is assigned a local replica, against which it executes
operations in a closed loop; each operation has a 50/50 chance
of being either a read or a write operation (using YCSB
workload A). Depending on the metric we want to assess,
requests can exclusively target partitions replicated on the local
replica (selected at random), or can also target partitions that
are only replicated at remote replicas. Clients are co-located
with their local replica (i.e. their latency to the cloudlet is
negligible) and the latency between clients and cloudlets in
remote regions is the same as the latency between the client’s
and the remote cloudlet’s regions.

A timeout value is used to control the frequency of control
information: for Bayou the timeout controls how often each
node broadcasts a metadata message and, in ENGAGE the
timeout is used to control for how long a broker holds a MF
message. Except on experiments where we vary it, this timeout
value is set to 100 ms. Furthermore, and except when stated
otherwise, we use causal consistency as the target level of
consistency for all operations in the experiments.

In the experiments that we report next, we consider varia-
tions of a subset of these parameters, keeping the others on
their default values, in order to measure different aspects of
the studied solutions. All results reported in this paper were
obtained by running multiple independent instances of each
experiment. While we do not report confidence intervals, we
have observed negligible variations on the results across these
independent runs.

B. Signaling Overhead

We start by comparing the signaling overhead of ENGAGE
and Bayou. Both systems require the exchange of control
messages to keep the vector clocks of each cloudlet up-to-
date. This is of paramount importance to allow clients to
be served quickly and avoid unnecessary delays due to false

Fig. 4: Signaling Impact: ENGAGE vs Bayou

(a) Locality-Driven Setting (b) Uniform Setting

Fig. 5: Remote Op. Latency: ENGAGE vs Bayou and Saturn

dependencies. In systems such as Bayou, vector clocks can be
updated via the periodic exchange of metadata messages, that
carry the vector clock position of the sender [8]. ENGAGE uses
metadata flush (MF) messages for the same purpose. Unlike
Bayou, in ENGAGE a MF message from a cloudlet can be
piggybacked on the update messages sent from other cloudlets,
as explained in Section III. This often prevents ENGAGE from
sending signaling messages just to update vector clocks.

Fig. 4 shows the number of control messages exchanged,
both by Bayou and by ENGAGE, as a function of the timeout
value. In the x axis we vary the timeout value and in the y
axis we depict the number of control messages per second (in
logarithmic scale). We omit Saturn, since it does not rely on
vector clocks. The reported results are based on the locality-
driven setting (Fig. 3a), however, using the uniform setting we
obtained similar results. In ENGAGE, we only count the MF
messages that were not piggybacked with update messages,
this captures the extra messages incurred by ENGAGE over the
Saturn’s metadata service. Obviously, the larger the timeout,
the smaller the signaling overhead is, given that control
messages are only sent when the timeout expires. While in
Bayou, the number of control messages is simply a function of
the timeout values used, the piggyback mechanism of ENGAGE
allows it to benefit much more from larger timeouts. In fact,
it can be observed that, just for a timeout of 5ms, the number
of control messages propagated by Bayou is already multiple
orders of magnitude higher than ENGAGE, and after a timeout
of 100ms, all the ENGAGE MF messages can be piggybacked
in some update message with high probability. This shows that
the piggyback mechanism of ENGAGE is highly effective.
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Fig. 6: Visibility Time: ENGAGE vs Bayou and Saturn

C. ENGAGE vs Bayou and Saturn

In this section, we compare the performance of ENGAGE
against Bayou and Saturn, in terms of the client delay and the
visibility latency incurred by these systems.

Fig. 5 shows the latency experienced by clients when
they perform a remote operation. In this experiment, clients
executed 10 operations on their local replica, followed by an
operation in a random remote replica. We present the results
for both data placement schemes depicted in Fig. 3, while
varying the timeout value used to control the frequency of
metadata messages in Bayou, and the timeout of MF messages
in ENGAGE. In the x axis, we vary the clients’ think time, i.e.,
the time between a client receiving an operation response and
sending its next operation. The larger the think time, the more
likely it is that updates in the causal past of the client have
already been applied when the it performs a remote operation.

ENGAGE and Bayou are systems based on vector clocks
that have fine-grained information about which updates the
client has observed and that need to be locally applied before
executing the client operation. Using this information, they
can reply faster. Saturn does not keep detailed information
regarding the past of each client. Thus, when a client executes
a remote operation, it needs to propagate a migration label to
the remote cloudlet, making the client always dependent on
the last operation executed or received by the local cloudlet.
As such, Saturn is unable to leverage on the think time of
clients, exhibiting a (constant) high remote operation latency.

The latency values of ENGAGE do not depend on the
metadata propagation timeout since, as shown in Section IV-B,
as long as there are write operations being propagated, MF
messages can be piggybacked before their timeout expires.
In contrast, the metadata timeout is a key parameter for the
remote operation latency in Bayou. We can see that with a
timeout value of 0ms, remote operations have low latency,
however this incurs in a high number of transmitted control
message. With a timeout value of 100ms, the latency of
both Bayou and ENGAGE become similar and, with an higher
timeout value of 200ms, Bayou starts showing high latency
values for small think times, while still requiring an high
number of control messages.

Fig. 6 shows the visibility times of operations, i.e., the time
it takes for a local update to be applied on all remote replicas

(a) Engage (b) Bayou

Fig. 7: Visibility Time per Partition

of the updated data object, using both data placement settings.
The visibility time of operations is an important metric in
edge systems with partial replication as it influences both
the migration time of clients (unavoidable when using partial
replication), and data freshness, i.e., if clients are accessing up-
to-date or old data. In the x axis, we vary the timeout value
used to control the frequency metadata messages in Bayou,
and the timeout of MF messages in ENGAGE.

For lower timeout values, in the uniform setting (Fig. 6b),
ENGAGE and Saturn require update operations or operation
metadata, respectively, to go through multiple hops in the
metadata service to reach all regions, resulting in higher
visibility times than Bayou, where all data is propagated
directly between replicas. However, in the locality-driven
setting (Fig. 6a), since regions with shared data partitions
are only one hop away, by funnelling all inter-region data
through the high-bandwidth datacenter connections, ENGAGE
achieves lower visibility times, while in Bayou and Saturn
each edge node needs to propagate the payload of operations to
multiple nodes, decreasing their efficiency. Since Bayou needs
to receive updates from remote cloudlets before it can apply
a remote update, the visibility times of operations rise sharply
when the timeout value increases. In contrast, ENGAGE and
Saturn rely on a metadata service to apply updates. Therefore,
they do not depend on metadata from operations on objects
they do not replicate, resulting in constantly low visibility
time. From these experiments, it is clear that the timeout value
has a large impact on the performance of Bayou, while the
performance of ENGAGE stays mostly unaffected, allowing it
to achieve low remote operation latency and visibility times
regardless of the used timeout value.

Fig. 7 shows this behaviour in more detail. This figure shows
the average visibility times per data partition per region in
the experiments denoted in the last data point of Fig. 6a.
In Fig. 7b we observe that in Bayou, operation visibility
in a region is delayed when an operation originates from a
region replicating data partitions not replicated locally. For
instance, operations over partition B that are received by
replicas from Region NW have higher visibility times than
operations over partition A. This happens because operations
on partition B may have dependencies of operations over
partition C, that will only be fulfilled once replica 2 receives
a metadata message from either replica 3 or 4. The result is
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Fig. 8: Remote Operation Latency with Session Guarantees

that visibility times in Bayou are a function of the period
used to exchange metadata messages. On the other hand,
since ENGAGE employs a metadata service, once a replica
receives an update notification, it can immediately execute the
operation. This happens because any pending MF messages
upon which an update operation depends are flushed by that
same operation and delivered to all replicas.

D. Benefits from Session Guarantees

In this section, we show that we can further reduce the
latency of remote operations when the user/application can
operate using weaker session guaranties, and does not require
full causal consistency. Fig. 8 shows the average latency of
remote operations when different session guarantees are used
The results in the figure capture how the latency for the
different session guarantees is affected by parameters such
as the previously mentioned think time and the read/write
ratio. We omit Saturn from the plots as it does not offer
support for configurable session guarantees. As previously
described in Section III-D, in ENGAGE, two clocks are kept
on the client-side, and used to check if an operation is
safe to execute. As such, we employ three combinations of
guarantees: WFR+MW, where the write clock is used for read
and write operations; MW+RYW, where the read clock is used;
and causal consistency, where both vector clocks are used.

Fig. 8a shows the impact of the think time of clients on
remote operation latency for different systems and session
guarantees. When using WFR and MR, as these are the weakest
sessions guarantees leading to clients rarely ever blocking,
the think time of clients has very little impact, and latency
remains stable. This happens since it is very unlikely for clients
to read the effects of an update operation in a cloudlet and
then execute an operation in a remote cloudlet that did not
receive that operation. When using MW and RYW, however,
the think time of clients starts to have a visible effect on the
latency of remote operations. When a client executes an update
operation and then immediately executes a remote operation
in a different replica, it is likely that its previous operation is
not yet visible in the remote replica, thus leading the remote
replica to block the client until that operation is made visible.
The higher the think time of clients, the higher the chance
that their previous operations are already visible in the remote
replica to which the client migrates to next, thus decreasing

(a) Locality-Driven Setting (b) Uniform Setting

Fig. 9: Throughput vs Latency

remote operation latency times. Causal consistency is achieved
by combining all sessions guarantees, (by using both vector
clocks), however, since the read clock almost never blocks
client operations, the results for causal consistency end up
being similar to the ones of MW and RYW.

Fig. 8b shows the impact of the read/write ratio on remote
operation latency. For most guarantees, the figure shows a sim-
ilar trend, with the WFR and MR guarantees being unaffected
by the variation of the percentage of write operations. For the
other session guarantees, the latency tends to grow with the
number of write operations, which is not surprising, given that
additional write operations will make it the more likely that a
remote operation from a client depends on one or more recent
updates that are still in transit to the remote replica.

In both figures, Bayou was configured to use a metadata
message timeout of 100ms, as it was the value that made it
closer to ENGAGE in the previous results (Fig 6). While this
timeout leads to slightly lower latencies, it also means that the
number of metadata messages is around 5 orders of magnitude
higher than the number of MF messages of ENGAGE.

E. Leveraging the metadata service for the edge

In this section, we measure the advantages of leveraging
the metadata service to disseminate update operations in an
edge scenario, as opposed to having cloudlet send them in
a point-to-point manner, as explained in Section III-G. In
this experiment, clients execute 95 operations on their local
replica, following by migrating to a random remote replica and
executing 5 remote operations, and then returning to their local
replica. Fig. 9 shows the maximum throughput of each system
in the two previously presented settings (Fig. 3). In these ex-
periments, the timeout for both Bayou metadata messages and
ENGAGE MF messages is set to 100ms, which, according to
the previous experiments, is a good balance between visibility
times and number of metadata messages. Additionally, we
set the size of data objects to 2048 bytes, in order to better
understand how the communication patterns of the considered
protocols are affected when available bandwidth is limited.

The first relevant observation is that, in both cases, Saturn
is unable to reach the throughput of the other systems. This
happens due to two main reasons: i) the higher visibility times
of Saturn (studied in the previous sections) force clients to
spend more time waiting, when migrating between replicas;
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ii) the lack of fine-grained dependency tracking in Saturn pre-
vents replicas from applying remote operations concurrently;
instead, updates must be applied in the order by which labels
are received from the metadata service, further contributing to
the increase of visibility times.

Efficiently routing the payload of update operations be-
comes an important aspect when comparing ENGAGE with
Bayou in an edge setting, where edge replicas have access to
much lower bandwidth than in traditional datacenter deploy-
ments, and the data partitions are complexly distributed. By
setting up the metadata service of ENGAGE in an hierarchical
way, such that internal nodes in the tree are the ones with
the highest available bandwidth, we can leverage on it to
propagate the payload of update operations. The benefits of
this approach can be seen particularly in Fig. 9a, where the
raw throughput of ENGAGE surpasses that of Bayou. In this
figure, we can see that, while the other systems are limited
by the bandwidth of edge replicas (that need to propagate
each operation to multiple other replicas), ENGAGE is able to
smartly use available bandwidth to increase its performance.
Additionally, in a real world deployment, where the number of
replicas could reach the hundreds or thousands, the benefits of
this propagation scheme would become even more noticeable.

V. CONCLUSIONS

Given that latency constrained applications are one of the
main drivers for edge computing, offering low latency when
accessing data on the edge is of paramount importance. In
this paper, we have presented ENGAGE, a novel architecture
for supporting session guarantees for partially replicated edge
storage systems. ENGAGE combines the use of vector clocks
and metadata services to achieve both low visibility times
and low remote operation latency, while leveraging on the
hierarchical nature of edge deployments to optimize bandwidth
usage, maximizing throughput. We show that, by using session
guarantees, ENGAGE allows the programmer to fully exploit
the application semantics, improving its performance, and
outperforming systems based on full causal consistency. At
the same time, ENGAGE avoids stalling remote updates due
to false dependencies, offering low operation visibility times.
Finally, ENGAGE is able to achieve these goals while reducing
the amount of control messages that are required to operate to
a negligible fraction of the total system traffic.
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