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Abstract—Edge computing is a paradigm that extends cloud
computing with storage and processing capacity close to the edge
of the network that can be materialized by using many fog nodes
placed in multiple geographic locations. Fog nodes are likely
to be vulnerable to tampering, so it is important to secure the
functions they provide. A key building block of many distributed
applications is an ordering service that keeps track of cause-effect
dependencies among events and that allows events to be processed
in an order that respects causality. In this paper we present the
design and implementation of a secure event ordering service for
fog nodes. Our service, named Omega, leverages the availability
of a Trusted Execution Environment (TEE) based on Intel SGX
technology to offer fog clients guarantees regarding the order in
which events are applied and served, even when fog nodes are
compromised. We have also built OmegaKV, a key-value store
that uses Omega to offer causal consistency. Experimental results
show that the ordering service can be secured without violating
the latency constraints of time-sensitive edge applications, despite
the overhead associated with using a TEE.
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I. INTRODUCTION

Cloud computing is a model for deploying Internet appli-
cations that allows companies to execute services in shared
infrastructures, typically large data centers, that are managed
by cloud providers. The economies of scale that result from
using large shared infrastructures reduce the deployment costs
and make it easier to scale the number of resources associated
with each application in response to changes in demand. Cloud
computing has been, therefore, widely adopted both by private
and public services [1].

Despite its benefits, cloud computing has some limitations.
The number of data centers that offer cloud services is
relatively small, and they are typically located in a few central
locations. For instance, Google currently maintains 16 data
centers; and only 3 of these data centers are not located in
North America or Europe [2]. Thus, clients that operate far
from these data centers may experience long latencies [3].

Many applications deployed in the cloud provide a range
of services to clients that reside in the edge of the network:
desktops, laptops, but also smartphones or even smart devices
such as cameras or home appliances, also known as the
Internet of Things (IoT). The number and capacity of these
devices have been growing at a fast pace in recent years.
Many of these devices can run real time applications, such as
augmented reality or online games, that require low latencies
when accessing the cloud. In fact, it is known that a response
time below 5ms—30ms is typically required for many of these
applications to be usable [4].

One solution to address the latency requirements of new
edge applications is to process data at the edge of the network,

close to the devices, a paradigm called edge computing [5].
To support edge computing, one can complement the services
provided by central data centers with the service of smaller
data centers, or even individual servers, located closer to the
edge. This concept is often named fog computing [6]-[8]. It
assumes the availability of fog nodes that are located close
to the edge. The number of fog nodes is expected to be
several orders of magnitude larger than the number of data
centers in the cloud. Cloud nodes are physically located in
secure premises, administered by a single provider. Fog nodes,
instead, are most likely managed by several different local
providers and installed in physical locations that are more
exposed to tampering. Therefore, fog nodes are substantially
more vulnerable to being compromised [9], [10], and develop-
ers of applications and middleware for edge computing need
to take security as a primary concern in the design.

In this paper, we address the problem of securing middle-
ware for edge computing. Specifically, we focus on securing
an event ordering service that is able to keep track of cause-
effect dependencies among events and that allows events to
be processed in an order that respects causality. The ability
to keep track of causal relations among events is at the heart
of distributed computing and, as such, an ordering service is
a fundamental building block for many applications such as
storage services [11], graph stores [12], [13], social networks
[14], online games [15], among others. The idea of providing
an event ordering service is not new (an example is Kronos
[16]) but, to the best of our knowledge, we are the first to
address the problem of providing secure implementations that
may be safely executed in fog nodes.

Our service, named Omega, has as main goals to provide
the following guarantees over data stored in fog nodes:

o Integrity: A fog node cannot modify application data
without this being detected.

o Freshness: A fog node cannot return an old version of
data, without this being detected.

o Causal Consistency: A fog node cannot modify the
causal order of events without being detected.

Omega leverages the wide availability of support for Trusted
Execution Environments (TEE), namely of Intel SGX en-
claves, to offer fog clients guarantees regarding the order
by which events are applied and served, even when fog
nodes become compromised. We take particular care to use
lightweight cryptographic techniques to ensure data integrity
while keeping a reasonable tradeoff with availability. A key
goal is to secure the ordering service without violating the la-
tency constraints imposed by time-sensitive edge applications.
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We achieve this by using enclaves only for a few important
operations. In particular, applications run outside the TEE and
use the enclave to selectively request proofs over the order
of operations. Also, the interface of Omega is, as it will be
discussed later, richer than that of services such as Kronos.

Omega is the first system that provides an ordering service
that allows clients to access and navigate the history of all
events in a secure and efficient manner, despite intrusions in
the Omega node. Clients can crawl the event history without
having to constantly access the enclave. All events are ordered
and stored in the untrusted zone and the client is only required
to access the enclave to get the root of the event history.

To illustrate the use of Omega and to assess its performance,
we have built a key-value store named OmegaKV, that offers
causal consistency [17] for the edge. OmegaKYV is an extension
of causal-consistent key-value stores that have been previously
designed for the cloud [11], [18]-[20]. We are particularly
interested in extending key-value stores that offer causal con-
sistency, since this is the strongest consistency model that can
be enforced without risking blocking the system when network
partitions or failures occur [21]-[23]. Clients of OmegaKV can
perform write and read operations on data replicated by fog
nodes, and are provided with the guarantees that writes are
applied in causal order and that reads are also served in an
order that respects causality.

We experimentally assessed the performance of Omega
using a combination of micro-benchmarks and its use to
secure the metadata required by OmegaKV. Our experimental
results show that Omega introduces an additional latency of
approximately 4ms, which is much smaller than the latency
required to access central cloud data centers, and that, contrary
to cloud based solutions, allows latency values in the 5ms-
30ms range, as required by time-sensitive edge applications.

II. BACKGROUND AND RELATED WORK
A. Edge Computing and Fog Nodes

Edge computing is a model of computation that aims at
leveraging the capacity of edge nodes to save network band-
width and provide results with low latency. However, many
edge devices are resource constrained (in particular, those that
run on batteries) and may benefit from the availability of
small servers placed in the edge vicinity, a concept known
as fog computing. Fog nodes provide computing and storage
services to edge nodes with low latency, setting the ground
for deploying resource-eager latency-constrained applications,
such as augmented reality.

B. Securing Fog Services

While some edge infrastructures may be located in secure
premises, many applications will require a number of edge
servers to be placed in vulnerable locations (e.g., Road Side
Units [24]). Having fog nodes dispersed among multiple
geographic locations, close to the edge, increases the risk
of being attacked and becoming malicious. Therefore, the
security of edge services is a growing concern [9], [10],
[25]. A compromised fog node may delete, copy, or alter
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operations requested by edge devices, causing information to
be lost, leaked, or changed in such a way that it can lead the
application to a faulty state. To address this challenge, one
needs to resort to a combination of techniques, from which
we highlight replication and hardening.

Replication consists in relying on multiple fog nodes in-
stead of a single node. If enough fog nodes are used, it may be
possible to mask arbitrary faults (often designated Byzantine
faults [26]) and, in some cases, to detect compromised nodes.
Techniques such as Byzantine quorums [3], [27] can be used
for this purpose. Although they require contacting multiple fog
nodes, this is the only way to ensure that critical information
is not lost due to a compromised fog node, as such a node
may become silent. Unfortunately, contacting and voting on
the output of multiple fog nodes increases the latency of
operations and may defeat the very purpose of fog computing.
Therefore, we assume that many applications will be able to
make progress while contacting a single fog node, specially if
the fog node can execute quorum validations in the background
and is hardened.

Hardening [28] consists in using software and/or hardware
mechanisms to reduce the ability of the adversary to compro-
mise a device. Using the appropriate techniques it may be
possible to prevent a compromised fog node from altering
information unnoticed, effectively reducing the amount of
damage an infected fog node can cause. A relevant mecha-
nisms in this context is the use of a TEE, a secured execution
environment with guarantees provided by the processor. The
code that executes inside a TEE is logically isolated from the
operating system (OS) and other processes, providing integrity
and confidentiality, even if the OS is compromised. TEEs have
been identified as one of the most promising technologies to
secure computation and sensitive data in fog nodes [29].

Intel Software Guard Extensions (SGX) is a set of func-
tionalities introduced in sixth generation Intel Core micro-
processors that implement a form of TEEs named enclaves
[30], [31]. The potential benefits of this technology for the fog
have already been recognized by Intel [32] and it has already
been used in practice [33], [34]. Applications designed to use
SGX have two parts: an untrusted part and a trusted part. The
trusted part runs inside the enclave, where the code and data
have integrity and confidentiality; the untrusted part runs as a
normal application. The untrusted part can make an Enclave
Call (ECALL) to switch into the enclave and start the trusted
execution. The opposite is also possible using an Outside
Call (OCALL). The SGX architecture implements a number
of mechanisms to ensure the integrity of the code, including
an attestation procedure that allows a client to get a proof
that it is communicating with the specific code in a real SGX
enclave, and not an impostor [35]. A limitation of current SGX
implementations is that the protected memory region, named
enclave page cache, is limited to 128 MB [36]. Therefore, it
is essential to minimize the memory usage inside the enclave.
In particular, the use of more memory also increases the swap
time from enclave and out. While attacks against SGX like
Foreshadow [37], [38] exist, Intel continues to investigate how
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to mitigate these issues.

With the availability of Intel SGX new systems have
emerged to alleviate SGX limitations. SCONE [39] supports
secure Linux containers that offer I/O data operations effi-
ciently, in Omega all enclave operations are done in memory
thus avoiding the use of I/O operations. ROTE and LCM [40],
[41] propose efficient monotonic counter that Omega could use
to persistently store its state and prevent rollback attacks.

C. Event Ordering

Most distributed applications need to keep track of the
order of events. Different techniques can be used for this
purpose, from synchronized physical clocks [42], [43], logical
Lamport clocks [17], vector clocks [44], [45], hybrid clocks
[46], and others. In most cases, the event ordering service
is a core component of the application and if this service is
compromised the correctness of the application can no longer
be ensured [47], [48].

In many cases, applications use their own technique to
order events, so the implementation of the ordering service is
intertwined with the application logic. This approach has two
important drawbacks: first, it is hard to keep track of chains of
related events across multiple applications [49], [50]. Second,
it causes developers to maintain potentially complex code, that
is duplicated in many slightly different variations.

Kronos [16] was recently proposed as an alternative ap-
proach that consists in offering event ordering as a service and
can be used by multiple applications, although it was designed
for the cloud and does not implement security measures. In the
context of edge computing, implementing the event ordering as
a separate service that is provided by fog nodes makes it easier
to harden the implementation, increasing the robustness of the
applications that use such a secured version of the service. In
this paper we follow this path and describe the design and
implementation of Omega, a secure event ordering service to
be executed at fog nodes.

D. Edge Storage

To unleash their full potential, fog nodes should not only
provide processing capacity, but also cache data that may be
frequently used [51]; otherwise, the advantages of processing
on the edge may be impaired by frequent remote data accesses
[52]. By using cached data, requests rarely need to be served
by data centers. Consequently, a key ingredient of edge-
assisted cloud computing is a storage service that extends
the one offered by the cloud in a way that relevant data is
replicated closer to the edge. Therefore, in this paper we also
describe the implementation of a storage service to be provided
by fog nodes, that we have named OmegaKV. This storage
service extends key-value stores designed for the cloud that
offer causal consistency [11], [18]. This consistency criteria
is particularly meaningful for edge computing, given that it
was shown to be the strongest consistency criteria that can be
offered without compromising availability [53].

Very recently, two key-value stores that leverage SGX have
been proposed: ShieldStore [54] and Speicher [55]. Both
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have been designed to operate in data centers at the cloud
layer. Omega is a more general service, that can be used to
implement a key-value store but also other services at the
fog layer. The authors of ShieldStore suggest that a Merkle
tree could be used to store data outside the enclave, but they
have not implemented that strategy. As it will be discussed,
Omega, that was developed concurrently with ShieldStore and
Speicher, does use and evaluate the use of a Merkle tree in its
implementation. Speicher uses a table in memory and stores
within the enclave one hash per row of this table being a
limitation on system scalability. Additionally, when this table
becomes full, Speicher uses the enclave to store data on disk
having a heavy latency cost. Pesos [56] is secure object store
that takes advantage of SGX. Pesos was also built for the cloud
and assumes a secure third party to persistently store the data,
while OmegaKV stores the data locally in the untrusted part.

Needless to say, any storage service that offers causal
consistency needs to keep track of the causal order relations
among read and write operations. Instead of embedding such
operations in the code of OmegaKV, our implementation
makes extensive use of Omega. As a result, OmegaKV il-
lustrates the benefits than can be achieved by having an event
ordering service implemented at the fog level, and also shows
how applications can leverage the fact that Omega is secured
to harden their own behaviour.

III. VIOLATIONS OF THE EVENT ORDERING

Before we describe the design and implementation of
Omega, it is worth enumerating the problems that might
occur if the event ordering service is compromised. In this
discussion, we assume that the event ordering service is
executed in a fog node and that the clients of the service are
edge nodes, servers in cloud data centers, or other fog nodes.
In this work, we assume that clients are always non-faulty and
we only address the implications of a faulty implementation
of the event ordering service.

The detailed API of the Omega service will be described
later in the text. For now, just assume that clients can: i)
register events with the event ordering service in an order
that respects causality and, ii) query the service to obtain
a history of the events that have been registered. Typically,
clients that query the event ordering service will be interested
in obtaining a subset of the event history that matches the
complete registered history (i.e., it has no gaps), and that is
fresh (i.e., includes events up to the last registered event).

Informally, a faulty event ordering service can: i) Expose
an event history that is incomplete (omitting one or multiple
events from the history); ii) Expose an event history that
depicts events in the wrong order, in particular, in an order
that does not respect the cause-effect relations among those
events; iii) Expose a history that is stale, by omitting all events
subsequent to a given event in the past (that is falsely presented
as the last event to have occurred); iv) Add false events, that
have never been registered, at arbitrary points in the event
history. These behaviours break the causal consistency and
may leave applications in an unpredictable state.
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IV. OMEGA SERVICE

Omega is a secure event ordering service that runs in a fog
node and that assigns logical timestamps to events in a way
that these cannot be tampered with, even if the fog node has
been compromised. Clients can ask Omega to assign logical
timestamps to events they produce, and can use these logical
timestamps to extract information regarding potential cause-
effect relations among events. Furthermore, Omega keeps track
of the last events that have been registered in the system and
also keeps track of the predecessor of each event. These last
features are relevant as they allow a client to check if the
information provided by a fog node is fresh and complete (i.e,
if a compromised fog node omits some events in the causal
past of a client, the client can flag the fog node as faulty).
More precisely, Omega establishes a linearization [57] of all
timestamp requests it receives, effectively defining a total order
for all events that occur at the fog node. Any linearization of
the event history is consistent with causality.

A. Omega API

The interface of the Omega service is depicted in Table I.
Omega assigns, upon request, logical timestamps to applica-
tion level events. Each event is assumed to have a unique
identifier that is assigned by the client of the Omega service,
so Omega is oblivious to the process of assigning identifiers
to events, which is application specific. Omega also allows
the application to associate a given tag to each event. Again,
Omega is oblivious to the way the application uses tags (tags
can be associated to users, to keys in a key-value store, to event
sources, etc.), but requires all tags to be registered before they
are used (registerTag). In Section IV-B, we provide examples
that illustrate how tags can be used by different applications.
The createEvent operation assigns a timestamp to a user
event and returns an object of type Event that securely binds
a logical timestamp to an event and a tag.

Clients are not required to know the internal format used by
Omega to encode logical timestamps, which is encapsulated
in an object of type Event. Instead, the client can use the
remaining primitives in Omega to query the order of events
and to explore the event linearization that has been defined
by Omega. The primitive orderEvents receives two events
and returns the oldest according to the linearization order.
The client can also ask Omega for the last event that has
been timestamped (lastEvent), or by the most recent event
associated with a given tag (lastEventWithTag), as shown
in Figure 1. Given a target event, the client can also obtain
the event that is the immediate predecessor of the target
in the linearization order (predecessorEvent), or the most
recent predecessor that shares the same tag with the target
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TABLE I
THE OMEGA API.

Register a tag with Omega

void registerTag (EventTag tag)

Create a timestamped event with a given identifier and a given tag
Event createEvent (Eventld id, EventTag tag)

Order two events and return the first

Event orderEvents (Event eq, Event e3)

Return the last event timestamped by Omega

Event lastEvent ()

Return the last timestamped event with a given tag
Event lastEventWithTag (EventTag tag)

Return immediate predecessor of a given event

Event predecessorEvent (Event e)

Return the most recent predecessor with the same tag
Event predecessorWithTag (Event e)

Return the application level identifier of an event
Eventld getld (Event e)

Return the tag associated with an event

EventTag getTag (Event e)

(predecessorWithTag). Finally getld and getTag extract
the application level event identifier and tag that have been
securely bound with the target logical timestamp.

Note that, although Omega is inspired by services such as
Kronos, it offers an interface that makes different tradeoffs.
First, it allows clients to associate events with specific ob-
jects / tags and to fetch all previous events that have updated
that specific object; Kronos requires clients to crawl the event
history to get the previous version of a particular object. Sec-
ond, Kronos requires the application to explicitly declare the
cause effect relations among objects. This is more versatile but
more complex to use than Omega, that automatically defines
a causal dependency among the last operation of a client and
all operations that this client has performed or observed in its
past. Finally, unlike Kronos, Omega automatically establishes
a linearization of all operations, which simplifies the design of
applications that need to totally order concurrent operations.

B. Example Use Cases

Many applications, such as online augmented-reality multi-
player games, assisted car driving, and distributed key-value
stores, can leverage an event ordering service such as Omega.
In the following, we use two of these examples to illustrate
how the API exported by Omega can be used for different
purposes.

1) Fog-Assisted Car Driving: Edge computing has the po-
tential to play a key role in vehicular networks, an area whose
significance is growing given the increasing number of sen-
sors deployed in current cars and the increasing autonomous
functions that cars can execute. An important component
of vehicular networks is the vehicle-to-infrastructure (V2I)
communication [58], [59], that allows vehicles to share the
information they produce and also to consume information that
can improve their autonomous behaviour. The infrastructure in
the V2I is made up of Road Side Units (RSU)s that are situated
at multiple points along roads; RSUs provide resources to
local vehicles and inform the cloud of local events. Recent
research indicates that fog nodes are promising candidates to
operate as upgraded RSUs, with more memory and processing
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power [24].

Among the many services that can be provided by RSUs/
fog nodes, one is to support information sharing regarding road
events or constraints such as accident warnings, congestion
control, driving conditions, curve speed warning, stop signal
gap assist, speed limits, road-weather information, and others.
These features will allow to deploy intelligent traffic lights
and other smart cities applications [60]. In such scenarios, the
operation of traffic lights, and the routes used in urban areas
can be optimized using the information provided by fog nodes.
Unfortunately, these applications also make RSUs appealing
targets for cyberterrorism, and there is a growing concern
regarding the risks and attacks to vehicular networks [59], [61],
[62]. If an attacker could selectively select which events are
propagated to a given traffic light or to a given vehicle it could
easily distort the perception of the actual road conditions, and
would be able to manipulate traffic and generate congestion.

A service such as Omega can play an essential role to
secure such infrastructure by providing the means that allow
intelligent traffic lights and intelligent cars to check if the
RSU is providing a fresh and gapless record of the incidents
reported by other vehicles. Vehicles could use the Omega
service to report occurrences to fog nodes, and use the Omega
ability to securely crawl the event log to detect malicious gaps
in the information reported. If a fog node is detected to be
compromised, the traffic light could simply fallback to a fixed
round-robin schedule of green/red signs to ensure traffic safety.

2) Key-Value Stores: Key-value stores are widely used in
cloud computing today, and a large number of designs have
been implemented [63]-[65]. Most of these systems support
geo-replication, where copies of the key-value store are kept
in multiple data centers. Geo-replication is relevant to ensure
data availability in case of network partitions and catastrophic
faults, but it is also instrumental to serve clients with lower
latency than what would be possible with a non-replicated
system. However, as discussed previously, cloud-based geo-
replication may not suffice to achieve the small latencies
required by novel latency-critical applications. Therefore, ex-
tending key-value stores to operate on fog-nodes is a relevant
research challenge. Many geo-replicated key-value stores, such
as COPS [11], Saturn [18], or Occult [66], support causal
consistency. As the name implies, causal consistency requires
the ability to keep track of causal relations among multiple
put and get operations. This can be achieved with the help
of a service such as Omega. We have decided to implement
an extension for an existing key-value store to illustrate the
benefits of Omega. Therefore, we postpone further discussion
on how to use Omega for the implementation of key-value
stores to Section VI, where we present OmegaKV.

V. OMEGA DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of the Omega service. We start by presenting the system
architecture, the system model and the threats they face.
Then, we describe in detail the most important aspects of the
implementation.
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A. System Architecture and Interactions

The Omega service is executed on fog nodes and is used
by processes that run in the edge or in cloud data centers, as
shown in Figure 2. Both the edge devices and the cloud can
use Omega to create and read events on the fog node in a
secure manner. For instance, edge devices can make updates
to data stored on the fog node that are later shipped to the
cloud (in this case, edge devices create events and the cloud
reads them). Moreover, the cloud can receive updates from
other locations and update the content of the fog node with
new data that is subsequently read by the edge devices. For the
operation of Omega, we do not need to distinguish processes
running on the edge devices from processes running on the
cloud, we simply denote them as clients. The method used
by clients to obtain the address of fog nodes is orthogonal
to the contribution of this paper. We can simply assume that
cloud nodes are aware of all fog nodes (via some registration
procedure) and the edge devices can find fog nodes using a
request to the Domain Name System (DNS), e.g., using a name
associated with the application, or to the cloud, e.g., using an
URL associated with the application.

The implementation of Omega assumes the existence of two
external components, that are executed in the cloud and are
assumed to be secure. These components are a Certification
Authority (CA), that is used to generate public key certificates,
and an Attestation Server (AS) , which is used when a fog node
binds to the Omega implementation via a binding procedure
(described in Section V-D). The techniques used to ensure the
correctness of these two external components are orthogonal
to this work (e.g. using standard Byzantine fault-tolerance
techniques [67], [68]).

As previously mentioned, we take advantage of Intel SGX.
The use of an enclave could lead to memory constraints in our
implementation. However, as will be explained in Section V-E,
Omega is not constrained by the memory available to the
enclave. This is a fundamental advantage of Omega and a
key distinctive feature with regard to related systems such as
ShieldStore [54]. In Omega, only the top hash of a Merkel
tree is required to be stored in the enclave, the rest of the
tree is stored in RAM in the untrusted zone. Also, the cost
of Omega functions only grows logarithmically with the size
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of the dataset, as opposed to ShieldStore, Speicher [55], and
Pesos [56], whose cost grows linearly. Scalability is a key
attribute of Omega.

B. Components of the Omega Implementation

An important aspect of Omega is how to maintain the
functionality of the system in case a fog node is compromised.
To tackle this issue, Omega takes advantage of Intel SGX,
as show in Figure 2; Omega generates all events inside the
enclave, i.e., it executes createEvent operations inside the
enclave. Moreover, all events take a digital signature obtained
inside the enclave using the private key of the fog node,
also stored inside the enclave. Omega includes the following
modules: i) a protocol used by clients to ensure that they are
interacting with the correct implementation of Omega running
on the enclave and not with a compromised version of the
same service (Section V-D); ii) two sub-components named
vault and event log that are used to preserve the Omega state
(Section V-E); iii) an implementation of each method in the
API (Section V-F).

C. Threat Model and Security Assumptions

The cloud and its services (AS, CA) are considered trust-
worthy, i.e., are assumed to fail only by crashing (essentially,
we make the same assumptions as the related work [11],
[16], [18]-[20]). Clients running on edge devices are also
considered trustworthy and may also fail only by crashing.

Due to their exposed location, fog nodes can suffer numer-
ous attacks and be compromised (an attacker might even gain
physical access to a fog node). We assume that fog nodes
may fail arbitrarily. They receive operations from clients and
communicate with the cloud, so we assume that a faulty fog
node can: modify the order of messages in the system; modify
the content of messages; repeat messages (replay attack);
tamper with stored data; and generate incorrect events. All
these actions, if not addressed carefully, may lead the system to
a faulty state, cause Omega to break the causal consistency of
the events, and therefore affect the correctness of applications
that use Omega.

We do not make assumptions about the security and time-
liness of the communication, except that messages are even-
tually received by their recipient.

We also assume that each fog node has a processor with
Intel SGX, which allows running a TEE designated enclave,
as depicted in Figure 2. Both clients and fog nodes have
asymmetric key pairs (K, K,.). The private key of the fog
node K never leaves the enclave. For public key distribution,
we consider the existence of a Public Key Infrastructure (PKI).
We do the usual assumptions about the security of TEEs/en-
claves (data executed/stored inside the enclave has integrity
and confidentiality ensured) and cryptographic schemes (e.g.,
private keys are not disclosed, signatures cannot be created
without the private key, and the hash function is collision-
resistant). For obtaining digital signatures efficiently we use
Elliptic Curve Cryptography (ECC), specifically the ECDSA
algorithm [69] with 256-bit keys, which is recommended by
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NIST [70]. We assume the existence of a collision-resistant
hash function. In practice we use SHA-256 [71], also recom-
mended by NIST [70]. We use the implementations provided
by the SGX SDK (inside the enclave) and Java (outside).
Interestingly, this involves converting public keys from little
endian (enclave) to big endian (Java).

D. Client Binding

Before a client invokes any method of the Omega API
must execute a client binding procedure. The purpose of this
procedure is to ensure that the client has the following guar-
antees: 1) it has a secure connection to a software component;
ii) this software component is running on an enclave in an
Intel processor with SGX; iii) the software version is the
same version as the one registered in Intel’s attestation servers
(which is assumed to be the correct version of the software
component). This is also known as the attestation procedure
[30]. One limitation of the procedure defined by Intel is that it
involves multiple communication steps, including a connection
to Intel servers (to ensure that the enclave is created on an
Intel CPU). This is a cumbersome process which conflicts
with our goal of improving the overall event-ordering service
latency. Therefore, we have resorted to a different scheme to
perform client binding. Our solution is inspired in Excalibur
[72], a service designed for the Trusted Platform Module [73]
that also aims at preventing clients from attesting directly
all servers. However, Omega uses substantially different tech-
niques, in particular, Excalibur requires the transmission of
keys in the network, which is significantly less robust than
Omega’s protocol. The Omega client binding protocol relies
on the Attestation Server (AS) that runs in the cloud. The
AS runs Intel’s attestation protocol with each fog node. It
performs this attestation periodically, with a period that can
be configured. If the fog node passes the attestation, the AS
obtains from the CA a certificate with an expiration date lower
than the period, digitally signed with its private key K <. The
attestation performed by the AS allows to establish a secure
connection with the enclave. The AS uses this connection to
acquire the public key of the fog node, which is added to
the previously mentioned certificate. This certificate is sent to
the Omega instance running on the enclave of the fog node
and stored in the untrusted part. Instead of running the Intel’s
attestation procedure Clients of the Omega service just ask the
Omega implementation to return the certificate that has been
issued by the AS.

E. The Omega Vault and the Event Log

Omega is required to safely store different pieces of infor-
mation, such as the private key associated with the certificate
signed by the AS, the last event generated by Omega, and also
the last event associated with each tag. However, the enclave
memory is limited to a few tens of megabytes and Omega
must keep an arbitrary number of tags. Therefore, Omega
requires a way to securely store the above information (in
particular the last event for an arbitrary number of tags). Also,
Omega must have access to events it has generated in the past,

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore. Restrictions apply.



Trusted Part
(Enclave)

Hash

| Hash |

Event

Untrusted Part

Hash
ENE

Event

Hash |

T
g
5

Tag Tag | event Tag

Fig. 3. Merkle tree stored in the Omega vault in the untrusted zone of the
fog node (with N = 4).

given that clients can use the predecessorEvent method to
crawl the event history. To satisfy these requirements, Omega
uses two storage services with different properties, the vault
and the event log. In both cases, Omega stores events in the
untrusted zone. These events can be in plain text but we still
need integrity, i.e., to ensure that the untrusted zone cannot
modify these values in case the fog node is compromised.
Given that events are signed by Omega, the untrusted zone
cannot modify individual events; however it can delete events
or replace new events by older events. We now describe the
implementation of these two services.

The event log is just a record of all events generated, so we
opted to implement this component as a key-value store where
events are stored using their unique identifier (assigned by the
application) as key. Everytime Omega makes a look-up for
a specific event (for instance, when a client crawls the event
history) it simply checks the integrity of the event before the
value is returned to the client. If an event cannot be found in
the key-value store, this is a sign that the untrusted components
of the fog node have been compromised.

The vault is harder to implement, because it needs to
maintain the last event generated for each tag and its im-
plementation needs to ensure that the untrusted components
cannot replace the last event by an older event. Therefore,
checking the integrity of the event returned is not enough: the
Omega vault implementation must ensure that the values have
not been changed. At the logical level, this is achieved by
requiring the enclave to hash the vault every time it updates
its content; the hash is stored at the enclave itself. However, a
naive implementation that would actually keep a single hash
for the entire vault would not perform well because, as we
have noted, the application may use a large number of tags
and computing a hash of all these tags may take a long time.
Also, it is not straightforward to ensure that the hash function
yields the intended value if the values being hashed are to
many to fit inside the enclave and may be changed by the
adversary while the hash is being computed.

To address the problems above, the implementation of the
Omega vault uses the following techniques. First, the content
of the vault is stored as a Merkle tree [74]. While conceptually
the vault is just a table, maintained in the untrusted zone,
where each line is a tag (index) and a column for the event
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(see Figure 3); in the implementation this table is splited
into N parts, and for each part, the enclave computes a hash
to ensure integrity. Since the enclave may not have enough
memory to store all these hashes, we use a Merkle tree such
that the enclave only needs to store the top hash. All the hashes
are calculated inside the enclave. In particular, SGX exhibits
an attribute user_check that allows passing a pointer of the
untrusted zone memory space as an argument in an ECALL,
so that the enclave can access data that is in the untrusted part.
This way, the enclave can verify and generate the Merkle tree
hashes when needed while storing only the top hash.

When the enclave requires to modify one part of the table
it needs to: compute the Merkle tree to verify the data,
then change the data and, finally, recalculate a few of the
Merkle tree hashes (as many as the depth of the tree). These
operations must be performed in an atomic manner, otherwise
an attacker could change the table between the two Merkle
tree calculations and the enclave would not be able to detect
it. To ensure the atomicity of the combined operations, the
enclave calculates the hashes in parallel, i.e., it calculates the
old hash and the new hash of the table simultaneously so that
in the end it can simply replace the old one.

Our implementation of the Omega vault is optimized to
support multi-threaded operation. The tag address space is
sharded, and each shard is maintained in an independent
Merkle tree. This allows the concurrent execution of multiple
threads inside the enclave, as long as they are updating
different shards. This substantially improves the throughput
sustained by the Omega service. Note that, even when multiple
threads are used, Omega still ensures the serialization of
all events: the existence of a sequential history makes the
task of crawling the event log easier. This means that the
assignment of the last event identifier is still executed in
mutual exclusion inside the enclave. However, the fraction
of the Omega code that needs to be executed serially is so
small, when compared with the remaining code, that it does
not represent an impairment to performance. In fact, with the
number of cores we have tested (up to 16), we could not
observe any significant degradation resulting from the need to
serialize events.

FE. Implementation of the Omega API

Clients invoke the Omega API via a client library. In this
way, clients do not need to be aware of the specifics for
communication with the Omega server. In fact, as we discuss
here, different methods use different communication primitives
to interact with the enclave. Also, some of the methods can be
executed directly by the client library and do not require any
message exchange with the enclave. In the next paragraphs,
we describe the implementation of each primitive in detail.

The methods registerTag and createEvent are the only
methods that modify the state of the Omega server in the
fog node. The method registerTag registers tags, so it has
to adjust the space allocated to the vault when the space
available is exhausted (recall that Omega keeps track of the
last event associated with each tag it observed); The method
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createEvent is used to create a new event in the server. The
state of an event is a tuple that contains the following fields: i)
a unique timestamp, that is associated to the event by the server
(in the current implementation, this timestamp is a sequence
number); ii) the Eventld; iii) the associated EventTag (that
must be a tag previously registered via the registerTag event);
iv) the Eventld of the last event generated by Omega; v) the
Eventld of the last event generated by Omega with the same
tag. The identifiers of the predecessor events are maintained in
the Omega vault. The new tuple is signed with the private key
of the Omega server. Subsequently, the Omega server replaces
the identifier of the last event generated by the identifier of
the new event and replaces the identifier of the last event
generated with the given tag, by the new event. As noted, these
variables are maintained in the secured Omega vault. Then, the
tuple is also stored in the event log that is maintained in the
non-secured portion of the fog node. Finally, the tuple that
represents the event is returned to the client.

The methods lastEvent, lastEventWithTag, predeces-
sorEvent, and predecessorWithTag do not change the state
of the Omega. When the server receives a lastEvent request it
extracts the last event it has processed from the vault (i.e, a tu-
ple with the fields enumerated in the previous paragraph) to the
client. Similarly, when the server receives a lastEventWithTag
request, it uses the vault to extract the previous request
and sends it to the client. The requests predecessorEvent
and predecessorWithTag are executed collaboratively by the
client library and the server. The client library, that is aware of
the internal structure of the Event tuple, extracts the timestamp
of the event. This event identifier is sent to the server that
fetches the complete event tuple associated to that identifier
from the event log. Finally, the full tuple associated with the
desired event is returned to the client.

Lastly, the methods orderEvents, getld, and getTag re-
quire no communication with the enclave, and are imple-
mented directly on the library. The first method extracts the
timestamp field from each tuple, compares their values, and
returns the tuple with lower timestamp. The other two simply
return the corresponding fields from the input tuple.

Note that several of the methods described above require
the Omega server to extract information from the vault and/or
from the event log. The integrity of the information maintained
in the vault is ensured by construction. Also the server
can always check the validity of records extracted from the
event log (since each tuple is signed with the private key of
the server, which is safely stored in the enclave). However,
the Omega server cannot prevent the non-secured portion of
the fog node from deleting information from stable storage,
making the vault, the log, or both unavailable. In this case,
the part of Omega that runs inside the enclave detects the
corruption, stops operating, and reports an error.

VI. OMEGA KEY-VALUE STORE

OmegaKV is an extension to key-value stores that have
been designed for the cloud. It makes it possible to maintain
a cache of some key-value pairs in the untrusted space of
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a fog node while still ensuring that clients observe up-to-
date values of the cached objects, in an order that respects
causality. This is achieved by resorting to the services of
Omega. OmegaKV also ensures that all updates performed
by edge clients on the fog node, if they are propagated to the
cloud, are propagated in an order that respects causality. As
discussed in Section IV, Omega cannot ensure availability in
case the adversary compromises the fog node. For availability,
clients of OmegaKV should write on multiple fog nodes
eagerly or cache the updates they have made and replay them
later, if and only if they discover that the fog node has failed
to propagate those updates to the cloud. We omit those details
in this paper, given that here we use OmegaKV mainly to
illustrate the use of Omega and as a means to assess the
overhead introduced by this service.

OmegaKV is implemented by combining an untrusted local
key-value store and Omega. The key-value store resides in
the untrusted region of the fog node, and it is used to store
the values persistently. Omega is used to keep track of the
relative order of update operations that have been performed
locally. Figure 4 illustrates the architecture of OmegaKYV, the
implementation of OmegaKV has components that run on a
client library and components that run of the fog node.

OmegaKV uses Omega as follows. Every update performed
on the local replica is associated with an event generated by
Omega. The keys used in the OmegaKV are associated to
EventTags in Omega; thus Omega will store securely each
update performed on each key. Also, for each update operation,
an Eventld is generated as a function of the content of the
update; more precisely, if a client writes value v on some key
k, that update will be identified by hash(k & v). The operation

Algorithm 1 OmegaKV Implementation

function PUT(k, v)
: event_id < hash(k @ v).
e < omega.createEvent (event_id, k)
BEGIN ATOMIC
(old_v, old_e) < local_kv.get (k)
if old_e = omega.orderEvents (old_e, e) then
local_kv.put (k, (v, €))
END ATOMIC

1:
2
3
4:
5:
6.
7
8:
9: function GET(k)

10: (v, e) < local_kv.get (k)

11: event_id <— getld (omega.lastEventWithTag (k))
12: hash_val < hash(k @ v).

13: if event_id = hash_val then

14: return v

15: else

16: return error;
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of the OmegaKV is summarized in Algorithm 1.

To put a value on the OmegaKV, the client starts by creating
an identifier for the put operation by hashing the concatenation
of the key and the value. Then it contacts Omega to serialize
the update operation with regard to other update operations
(in a serialization that respects causality). Finally, the server
replaces the old value of the key with the new one. The
event generated by Omega is stored locally with the update
value. This can be used subsequently to ensure that clients see
updates in the right order.

To perform the get operation, the server reads the value
and the associated event from the local key-value store and
queries Omega for the last event to be associated with the
target key. Then it uses the hash of the value that has been
safely stored by Omega and compares it with the hash of the
value returned by the untrusted code running on the fog node.
This allows the client to check that the untrusted zone has not
been compromised and that the value returned is, in fact, the
last value written on that key.

Finally, when the fog node ships the updates to the cloud,
these are shipped together with events generated by Omega.
This allows the cloud to apply the updates in the correct order
in the master replica (and in other fog nodes, if needed).

VII. EVALUATION

This Section is divided in two parts. First, we evaluate
Omega in isolation. The goal is to offer a better understanding
of the relative cost of the different components of the Omega
implementation. Second, we show the impact of using Omega
to secure a concrete service, namely OmegaKV. The goal is
to provide insights on the tradeoffs involved when executing
services securely on the cloud, insecurely on fog nodes, or
securely on fog nodes leveraging the services of Omega.

A. Experimental Setup

In our experiments, the fog node is a dedicated computer
with a 3.6GHz Intel i9-9900K CPU which has 16GB RAM
(this processor supports SGX). The fog node OS is Ubuntu
18.04.2 LTS 64bit with Linux kernel 5.0.8. We run the Intel
SGX SDK Linux 2.4 Release. The client machines are comput-
ers with 2.5GHz Intel i7-4710HQ CPU and 16GB RAM. Both
the clients and the fog node are deployed in our laboratory, in
the same network, emulating a 5G station communicating with
a terminal (i.e., a 1-hop communication'). Cloud services are
executed on a data center in London?, using Amazon Elastic
Compute Cloud (Amazon EC2) in t2.micro virtual machines

The Intel SGX SDK and the code for the enclave are in
C/C++. Omega was implemented in Java 11 and the Java
Native Interface (JNI) was used as a bridge between Java
and C++. For persistent storage we use the key-value store

I'This has been tuned to be aligned with the expected latency of 5G networks
and future MEC networks [75].

2The datacenter was selected as the closest (in Round Trip Time (RTT))
to our lab. Our lab is located in Europe but not in the United Kingdom.
This setting captures many realistic scenarios where clients are diverted to
the closest datacenter in their region. The observed experimental latency is
consistent with latency values collected by others [76].
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Redis [65]. In the experiments we executed 5000 operations
and discarded the first and the last 500 to avoid outliers.

B. Omega Configuration and Performance

We first discuss how to configure the Merkle tree used
by Omega since the performance of the service is highly
dependent on this configuration. Then we provide an overview
for the performance of Omega using the selected configuration.

1) Merkle Tree Configuration: The Merkle tree used to
store events is used on most of the Omega operations. There-
fore, its proper tuning is key to the performance of the service.
To understand how to configure the Merkle tree it is important
to notice that any operation that involves checking/changing
the content of the Omega vault requires to perform a number
of computations that is a function of the size of the vault
but also on the size selected for the Merkle tree leafs. More
precisely, let x be the size of each tree leaf and VaultSize
be the maximum number of entries that the vault can store.
Any operation on the vault must compute the hash of the
affected leaf node and then the hashes of all inner nodes of
the tree. Computing the hash of the leaf node has a cost that
is linear with the leaf size. We denote this cost leafHash(x).
Since we have implemented the Merkle tree as a binary
tree, updating/checking an inner node involves hashing two
values. We denote the cost of computing the hash of an inner
node innerHash. The number of inner nodes that need to be
computed grows logarithmically with the size of the vault
and its exact value is log,(¥5z¢) Therefore, the formula
that captures the cost of performing operation on the vault is
leafHash(x) + innerHash * log, (YSize ),

The formula above suggests that the optimal size of the leaf
nodes of the Merkle should be very close to 1, given that the
cost of hashing the leaf node grows linearly, while the cost
of hashing the inner nodes grows logarithmically. Figure 5
depicts the estimated cost of vault operation, on a vault of
size 512 when the size of leaf nodes is varied from 1 to 512
entries. Note that when the leaf size is 1, the height of the
Merkle tree is 9 and when the size of the leaf is 512 the entire
vault is stored in a single leaf. The values in this figure were
obtained using the formula above, that was fed with results
obtained experimentally for the parameters leafHash(z) and
innerHash. The values suggest that leaves should not be large;
in this case, for a vault size of 512, the formula suggests that
8 is the best leaf size.

Based on this observation, we decided to run multiple
experiments on the real system, where we measured the
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performance of the Omega vault implementation with different
leaf sizes and different vault sizes. The results are depicted in
Figure 6. As it can be observed, the best results are obtained
for leaf sizes of 2 and 4 (in fact, the differences in performance
for these two values is not significant) but quickly drops if
larger leaves are used. Therefore, in all other experiments, we
have used a leaf size of 2.

2) Executing Omega Operations: We now present the
results from two experiments that aim at assessing the per-
formance of the Omega implementation, in particular of the
operations that are mainly executed in the enclave. We have
measured the performance of the createEvent operation, as this
is the most expensive of all operations provided by Omega and
involves updating the Omega vault.

In the first experiment, we show that the performance of
Omega can scale as more threads are allocated to the service.
Figure 7 depicts the maximum number of operations per
second that our implementation can execute as the number
of threads increase. It can be seen that the throughput of the
system increases almost linearly up the 16 threads (the number
of available cores in the machine that we have used). This
is possible because cryptographic operations are performed in
parallel within the enclave and the Omega vault is sharded and
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£ C++
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= 000000000
0000000000
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Fig. 8. Operation latency for createEvent.
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updates to different shards can also be executed concurrently,
without blocking each other. Note also that the derivative
of the line is below 1; this is due to the overhead induced
by the synchronization required to enforce the serialization
guarantees offered by Omega.

In the second experiment, we measure the relative impact
of the latency introduced by the Omega’s implementation
in the client operation. Figure 8 shows how each individual
software component that is executed in the client critical path
contributes to the latency. This breakdown can be used to
estimate the performance of Omega in other networks. Since
the fog node is located one-hop away from the clients, the time
spent in the network is not the main contributor to the latency
observed by clients. The time lost from the Java layer to
enclave is also small (from 1ms to 2ms). The time lost doing
context switch is also considerably short, mainly because the
enclave keeps very little state (taking advantage of the Omega
Vault) and there is a small number of parameters passing in
and out of the enclave (as describe in Section V-F). Thus, the
main contributor to the latency are the cryptographic functions
executed in the client and in the enclave. In the client, 2ms—
2.5ms are required to compute and verify digital signatures.
On the server side, most of the time is also spent in the
processing digital signatures.

The observed latencies match the requirements of edge
applications. For instance, in vehicular applications, safety
application require warnings to be generated in less than
100ms [77], [78]; as depicted in Figure 8, creating an event
with Omega has a latency close to 5ms, which is considerably
below the 100ms threshold, allowing to create and deliver
multiple events to vehicles using Omega on an RSU/fog node
and still meet the deadline. Also, the overall connection time
of a vehicle with an RSU is tipically around 18-21s for a
vehicle moving at 120 km/h [79], [80], which allows a vehicle
to access other types of events such as congestion control,
driving conditions, curve speed, and others. The 5ms Omega
latency also matches the maximum tolerable delay for many
other edge applications, such as the value of ~7ms required
for Virtual Reality gaming [81], [82] and the ~10ms needed
for Augmented Reality apps [83].

C. Performance of the OmegaKV

We now measure the impact of using Omega to make other
services secure. For this purpose we compare the performance
of OmegaKV, our Omega-based key-value store for the fog,
with a similar non-secured service also running in the fog
node (denoted OmegaKV_NoSGX), and with a version where
security is achieved by running the service on the cloud
(denoted CloudKV). All implementations of the key-value
store have been developed in Java and use Redis [65] to
keep their state persistent. Also, all system use messages that
are cryptographically signed using our protocol described in
Section V-F. The major difference among the implementations
are that CloudKV and OmegaKV_NoSGX do not use the
enclave (nor the Merkle tree used to implement the Omega
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Vault), they make no effort to verify the integrity of stored
data, and they do not need to use JNI interface.

Figure 9 presents the maximum throughput that a client
can achieve using the three systems. In the CloudKV imple-
mentation, the latency to the data center severely affects the
throughput of the client; in our experiments the throughput of
a cloud-based implementation is roughly 25% of the fog-based
implementations. This was expected as one of the main moti-
vations for using fog-nodes is to reduce the latency observed
by clients. Interestingly, although the security mechanisms
that are used in the Omega implementation introduced some
amount of overhead (see the discussion in Section VII-B),
this overhead is partially diluted when Omega is just a part
of a larger system, that has many other sources of latency.
In our experiments, OmegaKV offers a throughput that is
approximately 18% smaller than the non-secured version of
the same service but that is, nevertheless, much higher than
the throughput supported by CloudKV.

Figure 10 compares the latency that a client experiences
when using the services OmegaKV, OmegaKV_NoSGX, and
CloudKYV. For a better understanding of the graph, we measure
the ping operation to calculate the round-trip time from the
client to the fog node and to the cloud, this is shown as
HealthTest line for the fog node and CloudHealthTest for the
cloud. As expected the client can perform operations with
much lower latency by using the fog node rather than using the
CloudKYV services that are in a data center, a reduction from
36ms to 12ms, close to 67%. OmegaKV has higher latency
than OmegaKV_NoSGX, due to the use of the enclave. In
absolute value we observe an increase in latency in the order
of 4ms, which is non-negligible but still significantly smaller
than the latency introduced by wide-area links. This allows
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OmegakV
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Fig. 11.  Write operation latencies w/ and w/o SGX.

OmegaKV to offer latency values in the Sms-30ms range
required by time-sensitive edge applications [4].

We also tested the performance of OmegaKV with different
data sizes up to 512 MB (this is the maximum object size
supported by Redis, our underlying persistent store). Results
are shown in Figure 11. For this experiment we compared
OmegaKV against OmegaKV_NoSGX. It is visible that our
system follows the same latency as the traditional key-value
store. This happens because, with large files, the overhead of
the enclave and cryptographic operations becomes negligible
when compared with the data transfer costs. It should be noted
that OmegaKV transfers only one hash of the object to Omega;
the object with tens of megabytes is stored in Redis.

VIII. CONCLUSIONS

Fog computing can pave the way for the deployment of
novel latency-sensitive applications for the edge, such as
augmented reality. However, in order to fulfill its potential, we
need to address the vulnerabilities that emerge when deploying
a large set of servers on many different locations that cannot
be physically secured with the same level of trust than cloud
premises. This paper makes a step in this direction by describ-
ing the design and implementation of a secure service that
can be executed on fog nodes in a secure manner leveraging
on the properties of trusted executions environments such as
Intel SGX. In particular, we have proposed Omega, an event
ordering service that can be used as a building block to build
higher level abstractions. With the dual purpose of illustrating
the use of Omega and of assessing its performance when
used in practice, we have also designed and implemented
OmegaKV, a causally consistent key-value store for the edge.
Our evaluation shows that, despite the costs incurred with the
use of the enclave, the use of Omega based applications can
still provide much smaller latency and higher throughput than
current cloud based solutions.
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