
Omega: a Secure Event Ordering Service for the Edge

Cláudio Correia Miguel Correia Luı́s Rodrigues

INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
{claudio.correia, miguel.p.correia, ler}@tecnico.ulisboa.pt

Abstract—Edge computing is a paradigm that extends cloud
computing with storage and processing capacity close to the edge
of the network that can be materialized by using many fog nodes
placed in multiple geographic locations. Fog nodes are likely
to be vulnerable to tampering, so it is important to secure the
functions they provide. A key building block of many distributed
applications is an ordering service that keeps track of cause-effect
dependencies among events and that allows events to be processed
in an order that respects causality. In this paper we present the
design and implementation of a secure event ordering service for
fog nodes. Our service, named Omega, leverages the availability
of a Trusted Execution Environment (TEE) based on Intel SGX
technology to offer fog clients guarantees regarding the order in
which events are applied and served, even when fog nodes are
compromised. We have also built OmegaKV, a key-value store
that uses Omega to offer causal consistency. Experimental results
show that the ordering service can be secured without violating
the latency constraints of time-sensitive edge applications, despite
the overhead associated with using a TEE.

Keywords-Security, IoT, Fog, Edge, Intel SGX

I. INTRODUCTION

Cloud computing is a model for deploying Internet appli-

cations that allows companies to execute services in shared

infrastructures, typically large data centers, that are managed

by cloud providers. The economies of scale that result from

using large shared infrastructures reduce the deployment costs

and make it easier to scale the number of resources associated

with each application in response to changes in demand. Cloud

computing has been, therefore, widely adopted both by private

and public services [1].
Despite its benefits, cloud computing has some limitations.

The number of data centers that offer cloud services is

relatively small, and they are typically located in a few central

locations. For instance, Google currently maintains 16 data

centers; and only 3 of these data centers are not located in

North America or Europe [2]. Thus, clients that operate far

from these data centers may experience long latencies [3].
Many applications deployed in the cloud provide a range

of services to clients that reside in the edge of the network:

desktops, laptops, but also smartphones or even smart devices

such as cameras or home appliances, also known as the

Internet of Things (IoT). The number and capacity of these

devices have been growing at a fast pace in recent years.

Many of these devices can run real time applications, such as

augmented reality or online games, that require low latencies

when accessing the cloud. In fact, it is known that a response

time below 5ms–30ms is typically required for many of these

applications to be usable [4].
One solution to address the latency requirements of new

edge applications is to process data at the edge of the network,

close to the devices, a paradigm called edge computing [5].

To support edge computing, one can complement the services

provided by central data centers with the service of smaller

data centers, or even individual servers, located closer to the

edge. This concept is often named fog computing [6]–[8]. It

assumes the availability of fog nodes that are located close

to the edge. The number of fog nodes is expected to be

several orders of magnitude larger than the number of data

centers in the cloud. Cloud nodes are physically located in

secure premises, administered by a single provider. Fog nodes,

instead, are most likely managed by several different local

providers and installed in physical locations that are more

exposed to tampering. Therefore, fog nodes are substantially

more vulnerable to being compromised [9], [10], and develop-

ers of applications and middleware for edge computing need

to take security as a primary concern in the design.

In this paper, we address the problem of securing middle-
ware for edge computing. Specifically, we focus on securing

an event ordering service that is able to keep track of cause-

effect dependencies among events and that allows events to

be processed in an order that respects causality. The ability

to keep track of causal relations among events is at the heart

of distributed computing and, as such, an ordering service is

a fundamental building block for many applications such as

storage services [11], graph stores [12], [13], social networks

[14], online games [15], among others. The idea of providing

an event ordering service is not new (an example is Kronos

[16]) but, to the best of our knowledge, we are the first to

address the problem of providing secure implementations that

may be safely executed in fog nodes.

Our service, named Omega, has as main goals to provide

the following guarantees over data stored in fog nodes:

• Integrity: A fog node cannot modify application data

without this being detected.

• Freshness: A fog node cannot return an old version of

data, without this being detected.

• Causal Consistency: A fog node cannot modify the

causal order of events without being detected.

Omega leverages the wide availability of support for Trusted

Execution Environments (TEE), namely of Intel SGX en-
claves, to offer fog clients guarantees regarding the order

by which events are applied and served, even when fog

nodes become compromised. We take particular care to use

lightweight cryptographic techniques to ensure data integrity

while keeping a reasonable tradeoff with availability. A key

goal is to secure the ordering service without violating the la-

tency constraints imposed by time-sensitive edge applications.

489

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00062

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



We achieve this by using enclaves only for a few important

operations. In particular, applications run outside the TEE and

use the enclave to selectively request proofs over the order

of operations. Also, the interface of Omega is, as it will be

discussed later, richer than that of services such as Kronos.

Omega is the first system that provides an ordering service

that allows clients to access and navigate the history of all

events in a secure and efficient manner, despite intrusions in

the Omega node. Clients can crawl the event history without

having to constantly access the enclave. All events are ordered

and stored in the untrusted zone and the client is only required

to access the enclave to get the root of the event history.

To illustrate the use of Omega and to assess its performance,

we have built a key-value store named OmegaKV, that offers

causal consistency [17] for the edge. OmegaKV is an extension

of causal-consistent key-value stores that have been previously

designed for the cloud [11], [18]–[20]. We are particularly

interested in extending key-value stores that offer causal con-

sistency, since this is the strongest consistency model that can

be enforced without risking blocking the system when network

partitions or failures occur [21]–[23]. Clients of OmegaKV can

perform write and read operations on data replicated by fog

nodes, and are provided with the guarantees that writes are

applied in causal order and that reads are also served in an

order that respects causality.

We experimentally assessed the performance of Omega

using a combination of micro-benchmarks and its use to

secure the metadata required by OmegaKV. Our experimental

results show that Omega introduces an additional latency of

approximately 4ms, which is much smaller than the latency

required to access central cloud data centers, and that, contrary

to cloud based solutions, allows latency values in the 5ms-

30ms range, as required by time-sensitive edge applications.

II. BACKGROUND AND RELATED WORK

A. Edge Computing and Fog Nodes

Edge computing is a model of computation that aims at

leveraging the capacity of edge nodes to save network band-

width and provide results with low latency. However, many

edge devices are resource constrained (in particular, those that

run on batteries) and may benefit from the availability of

small servers placed in the edge vicinity, a concept known

as fog computing. Fog nodes provide computing and storage

services to edge nodes with low latency, setting the ground

for deploying resource-eager latency-constrained applications,

such as augmented reality.

B. Securing Fog Services

While some edge infrastructures may be located in secure

premises, many applications will require a number of edge

servers to be placed in vulnerable locations (e.g., Road Side

Units [24]). Having fog nodes dispersed among multiple

geographic locations, close to the edge, increases the risk

of being attacked and becoming malicious. Therefore, the

security of edge services is a growing concern [9], [10],

[25]. A compromised fog node may delete, copy, or alter

operations requested by edge devices, causing information to

be lost, leaked, or changed in such a way that it can lead the

application to a faulty state. To address this challenge, one

needs to resort to a combination of techniques, from which

we highlight replication and hardening.

Replication consists in relying on multiple fog nodes in-

stead of a single node. If enough fog nodes are used, it may be

possible to mask arbitrary faults (often designated Byzantine

faults [26]) and, in some cases, to detect compromised nodes.

Techniques such as Byzantine quorums [3], [27] can be used

for this purpose. Although they require contacting multiple fog

nodes, this is the only way to ensure that critical information

is not lost due to a compromised fog node, as such a node

may become silent. Unfortunately, contacting and voting on

the output of multiple fog nodes increases the latency of

operations and may defeat the very purpose of fog computing.

Therefore, we assume that many applications will be able to

make progress while contacting a single fog node, specially if

the fog node can execute quorum validations in the background

and is hardened.

Hardening [28] consists in using software and/or hardware

mechanisms to reduce the ability of the adversary to compro-

mise a device. Using the appropriate techniques it may be

possible to prevent a compromised fog node from altering

information unnoticed, effectively reducing the amount of

damage an infected fog node can cause. A relevant mecha-

nisms in this context is the use of a TEE, a secured execution

environment with guarantees provided by the processor. The

code that executes inside a TEE is logically isolated from the

operating system (OS) and other processes, providing integrity

and confidentiality, even if the OS is compromised. TEEs have

been identified as one of the most promising technologies to

secure computation and sensitive data in fog nodes [29].

Intel Software Guard Extensions (SGX) is a set of func-

tionalities introduced in sixth generation Intel Core micro-

processors that implement a form of TEEs named enclaves
[30], [31]. The potential benefits of this technology for the fog

have already been recognized by Intel [32] and it has already

been used in practice [33], [34]. Applications designed to use

SGX have two parts: an untrusted part and a trusted part. The

trusted part runs inside the enclave, where the code and data

have integrity and confidentiality; the untrusted part runs as a

normal application. The untrusted part can make an Enclave

Call (ECALL) to switch into the enclave and start the trusted

execution. The opposite is also possible using an Outside

Call (OCALL). The SGX architecture implements a number

of mechanisms to ensure the integrity of the code, including

an attestation procedure that allows a client to get a proof

that it is communicating with the specific code in a real SGX

enclave, and not an impostor [35]. A limitation of current SGX

implementations is that the protected memory region, named

enclave page cache, is limited to 128 MB [36]. Therefore, it

is essential to minimize the memory usage inside the enclave.

In particular, the use of more memory also increases the swap

time from enclave and out. While attacks against SGX like

Foreshadow [37], [38] exist, Intel continues to investigate how

490

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



to mitigate these issues.

With the availability of Intel SGX new systems have

emerged to alleviate SGX limitations. SCONE [39] supports

secure Linux containers that offer I/O data operations effi-

ciently, in Omega all enclave operations are done in memory

thus avoiding the use of I/O operations. ROTE and LCM [40],

[41] propose efficient monotonic counter that Omega could use

to persistently store its state and prevent rollback attacks.

C. Event Ordering

Most distributed applications need to keep track of the

order of events. Different techniques can be used for this

purpose, from synchronized physical clocks [42], [43], logical

Lamport clocks [17], vector clocks [44], [45], hybrid clocks

[46], and others. In most cases, the event ordering service

is a core component of the application and if this service is

compromised the correctness of the application can no longer

be ensured [47], [48].

In many cases, applications use their own technique to

order events, so the implementation of the ordering service is

intertwined with the application logic. This approach has two

important drawbacks: first, it is hard to keep track of chains of

related events across multiple applications [49], [50]. Second,

it causes developers to maintain potentially complex code, that

is duplicated in many slightly different variations.

Kronos [16] was recently proposed as an alternative ap-

proach that consists in offering event ordering as a service and

can be used by multiple applications, although it was designed

for the cloud and does not implement security measures. In the

context of edge computing, implementing the event ordering as

a separate service that is provided by fog nodes makes it easier

to harden the implementation, increasing the robustness of the

applications that use such a secured version of the service. In

this paper we follow this path and describe the design and

implementation of Omega, a secure event ordering service to

be executed at fog nodes.

D. Edge Storage

To unleash their full potential, fog nodes should not only

provide processing capacity, but also cache data that may be

frequently used [51]; otherwise, the advantages of processing

on the edge may be impaired by frequent remote data accesses

[52]. By using cached data, requests rarely need to be served

by data centers. Consequently, a key ingredient of edge-

assisted cloud computing is a storage service that extends

the one offered by the cloud in a way that relevant data is

replicated closer to the edge. Therefore, in this paper we also

describe the implementation of a storage service to be provided

by fog nodes, that we have named OmegaKV. This storage

service extends key-value stores designed for the cloud that

offer causal consistency [11], [18]. This consistency criteria

is particularly meaningful for edge computing, given that it

was shown to be the strongest consistency criteria that can be

offered without compromising availability [53].

Very recently, two key-value stores that leverage SGX have

been proposed: ShieldStore [54] and Speicher [55]. Both

have been designed to operate in data centers at the cloud

layer. Omega is a more general service, that can be used to

implement a key-value store but also other services at the

fog layer. The authors of ShieldStore suggest that a Merkle

tree could be used to store data outside the enclave, but they

have not implemented that strategy. As it will be discussed,

Omega, that was developed concurrently with ShieldStore and

Speicher, does use and evaluate the use of a Merkle tree in its

implementation. Speicher uses a table in memory and stores

within the enclave one hash per row of this table being a

limitation on system scalability. Additionally, when this table

becomes full, Speicher uses the enclave to store data on disk

having a heavy latency cost. Pesos [56] is secure object store

that takes advantage of SGX. Pesos was also built for the cloud

and assumes a secure third party to persistently store the data,

while OmegaKV stores the data locally in the untrusted part.

Needless to say, any storage service that offers causal

consistency needs to keep track of the causal order relations

among read and write operations. Instead of embedding such

operations in the code of OmegaKV, our implementation

makes extensive use of Omega. As a result, OmegaKV il-

lustrates the benefits than can be achieved by having an event

ordering service implemented at the fog level, and also shows

how applications can leverage the fact that Omega is secured

to harden their own behaviour.

III. VIOLATIONS OF THE EVENT ORDERING

Before we describe the design and implementation of

Omega, it is worth enumerating the problems that might

occur if the event ordering service is compromised. In this

discussion, we assume that the event ordering service is

executed in a fog node and that the clients of the service are

edge nodes, servers in cloud data centers, or other fog nodes.

In this work, we assume that clients are always non-faulty and

we only address the implications of a faulty implementation

of the event ordering service.

The detailed API of the Omega service will be described

later in the text. For now, just assume that clients can: i)

register events with the event ordering service in an order

that respects causality and, ii) query the service to obtain

a history of the events that have been registered. Typically,

clients that query the event ordering service will be interested

in obtaining a subset of the event history that matches the

complete registered history (i.e., it has no gaps), and that is

fresh (i.e., includes events up to the last registered event).

Informally, a faulty event ordering service can: i) Expose

an event history that is incomplete (omitting one or multiple

events from the history); ii) Expose an event history that

depicts events in the wrong order, in particular, in an order

that does not respect the cause-effect relations among those

events; iii) Expose a history that is stale, by omitting all events

subsequent to a given event in the past (that is falsely presented

as the last event to have occurred); iv) Add false events, that

have never been registered, at arbitrary points in the event

history. These behaviours break the causal consistency and

may leave applications in an unpredictable state.

491

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. predecessorEvent and predecessorWithTag functions.

IV. OMEGA SERVICE

Omega is a secure event ordering service that runs in a fog

node and that assigns logical timestamps to events in a way

that these cannot be tampered with, even if the fog node has

been compromised. Clients can ask Omega to assign logical

timestamps to events they produce, and can use these logical

timestamps to extract information regarding potential cause-

effect relations among events. Furthermore, Omega keeps track

of the last events that have been registered in the system and

also keeps track of the predecessor of each event. These last

features are relevant as they allow a client to check if the

information provided by a fog node is fresh and complete (i.e,

if a compromised fog node omits some events in the causal

past of a client, the client can flag the fog node as faulty).

More precisely, Omega establishes a linearization [57] of all

timestamp requests it receives, effectively defining a total order

for all events that occur at the fog node. Any linearization of

the event history is consistent with causality.

A. Omega API

The interface of the Omega service is depicted in Table I.

Omega assigns, upon request, logical timestamps to applica-

tion level events. Each event is assumed to have a unique

identifier that is assigned by the client of the Omega service,

so Omega is oblivious to the process of assigning identifiers

to events, which is application specific. Omega also allows

the application to associate a given tag to each event. Again,

Omega is oblivious to the way the application uses tags (tags

can be associated to users, to keys in a key-value store, to event

sources, etc.), but requires all tags to be registered before they

are used (registerTag). In Section IV-B, we provide examples

that illustrate how tags can be used by different applications.

The createEvent operation assigns a timestamp to a user

event and returns an object of type Event that securely binds

a logical timestamp to an event and a tag.

Clients are not required to know the internal format used by

Omega to encode logical timestamps, which is encapsulated

in an object of type Event. Instead, the client can use the

remaining primitives in Omega to query the order of events

and to explore the event linearization that has been defined

by Omega. The primitive orderEvents receives two events

and returns the oldest according to the linearization order.

The client can also ask Omega for the last event that has

been timestamped (lastEvent), or by the most recent event

associated with a given tag (lastEventWithTag), as shown

in Figure 1. Given a target event, the client can also obtain

the event that is the immediate predecessor of the target

in the linearization order (predecessorEvent), or the most

recent predecessor that shares the same tag with the target

TABLE I
THE OMEGA API.

Register a tag with Omega
void registerTag (EventTag tag)

Create a timestamped event with a given identifier and a given tag
Event createEvent (EventId id, EventTag tag)

Order two events and return the first
Event orderEvents (Event e1, Event e2)

Return the last event timestamped by Omega
Event lastEvent ()

Return the last timestamped event with a given tag
Event lastEventWithTag (EventTag tag)

Return immediate predecessor of a given event
Event predecessorEvent (Event e)

Return the most recent predecessor with the same tag
Event predecessorWithTag (Event e)

Return the application level identifier of an event
EventId getId (Event e)

Return the tag associated with an event
EventTag getTag (Event e)

(predecessorWithTag). Finally getId and getTag extract

the application level event identifier and tag that have been

securely bound with the target logical timestamp.

Note that, although Omega is inspired by services such as

Kronos, it offers an interface that makes different tradeoffs.

First, it allows clients to associate events with specific ob-

jects / tags and to fetch all previous events that have updated

that specific object; Kronos requires clients to crawl the event

history to get the previous version of a particular object. Sec-

ond, Kronos requires the application to explicitly declare the

cause effect relations among objects. This is more versatile but

more complex to use than Omega, that automatically defines

a causal dependency among the last operation of a client and

all operations that this client has performed or observed in its

past. Finally, unlike Kronos, Omega automatically establishes

a linearization of all operations, which simplifies the design of

applications that need to totally order concurrent operations.

B. Example Use Cases

Many applications, such as online augmented-reality multi-

player games, assisted car driving, and distributed key-value

stores, can leverage an event ordering service such as Omega.

In the following, we use two of these examples to illustrate

how the API exported by Omega can be used for different

purposes.

1) Fog-Assisted Car Driving: Edge computing has the po-

tential to play a key role in vehicular networks, an area whose

significance is growing given the increasing number of sen-

sors deployed in current cars and the increasing autonomous

functions that cars can execute. An important component

of vehicular networks is the vehicle-to-infrastructure (V2I)

communication [58], [59], that allows vehicles to share the

information they produce and also to consume information that

can improve their autonomous behaviour. The infrastructure in

the V2I is made up of Road Side Units (RSU)s that are situated

at multiple points along roads; RSUs provide resources to

local vehicles and inform the cloud of local events. Recent

research indicates that fog nodes are promising candidates to

operate as upgraded RSUs, with more memory and processing

492

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



power [24].

Among the many services that can be provided by RSUs/

fog nodes, one is to support information sharing regarding road

events or constraints such as accident warnings, congestion

control, driving conditions, curve speed warning, stop signal

gap assist, speed limits, road-weather information, and others.

These features will allow to deploy intelligent traffic lights

and other smart cities applications [60]. In such scenarios, the

operation of traffic lights, and the routes used in urban areas

can be optimized using the information provided by fog nodes.

Unfortunately, these applications also make RSUs appealing

targets for cyberterrorism, and there is a growing concern

regarding the risks and attacks to vehicular networks [59], [61],

[62]. If an attacker could selectively select which events are

propagated to a given traffic light or to a given vehicle it could

easily distort the perception of the actual road conditions, and

would be able to manipulate traffic and generate congestion.

A service such as Omega can play an essential role to

secure such infrastructure by providing the means that allow

intelligent traffic lights and intelligent cars to check if the

RSU is providing a fresh and gapless record of the incidents

reported by other vehicles. Vehicles could use the Omega

service to report occurrences to fog nodes, and use the Omega

ability to securely crawl the event log to detect malicious gaps

in the information reported. If a fog node is detected to be

compromised, the traffic light could simply fallback to a fixed

round-robin schedule of green/red signs to ensure traffic safety.

2) Key-Value Stores: Key-value stores are widely used in

cloud computing today, and a large number of designs have

been implemented [63]–[65]. Most of these systems support

geo-replication, where copies of the key-value store are kept

in multiple data centers. Geo-replication is relevant to ensure

data availability in case of network partitions and catastrophic

faults, but it is also instrumental to serve clients with lower

latency than what would be possible with a non-replicated

system. However, as discussed previously, cloud-based geo-

replication may not suffice to achieve the small latencies

required by novel latency-critical applications. Therefore, ex-

tending key-value stores to operate on fog-nodes is a relevant

research challenge. Many geo-replicated key-value stores, such

as COPS [11], Saturn [18], or Occult [66], support causal

consistency. As the name implies, causal consistency requires

the ability to keep track of causal relations among multiple

put and get operations. This can be achieved with the help

of a service such as Omega. We have decided to implement

an extension for an existing key-value store to illustrate the

benefits of Omega. Therefore, we postpone further discussion

on how to use Omega for the implementation of key-value

stores to Section VI, where we present OmegaKV.

V. OMEGA DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation

of the Omega service. We start by presenting the system

architecture, the system model and the threats they face.

Then, we describe in detail the most important aspects of the

implementation.

Fig. 2. Omega architecture. CA is certification authority, AS is attestation
server, ΩC is Omega client, ΩV is Omega Vault and ΩL is the event log.

A. System Architecture and Interactions

The Omega service is executed on fog nodes and is used

by processes that run in the edge or in cloud data centers, as

shown in Figure 2. Both the edge devices and the cloud can

use Omega to create and read events on the fog node in a

secure manner. For instance, edge devices can make updates

to data stored on the fog node that are later shipped to the

cloud (in this case, edge devices create events and the cloud

reads them). Moreover, the cloud can receive updates from

other locations and update the content of the fog node with

new data that is subsequently read by the edge devices. For the

operation of Omega, we do not need to distinguish processes

running on the edge devices from processes running on the

cloud, we simply denote them as clients. The method used

by clients to obtain the address of fog nodes is orthogonal

to the contribution of this paper. We can simply assume that

cloud nodes are aware of all fog nodes (via some registration

procedure) and the edge devices can find fog nodes using a

request to the Domain Name System (DNS), e.g., using a name

associated with the application, or to the cloud, e.g., using an

URL associated with the application.

The implementation of Omega assumes the existence of two

external components, that are executed in the cloud and are

assumed to be secure. These components are a Certification
Authority (CA), that is used to generate public key certificates,

and an Attestation Server (AS) , which is used when a fog node

binds to the Omega implementation via a binding procedure

(described in Section V-D). The techniques used to ensure the

correctness of these two external components are orthogonal

to this work (e.g. using standard Byzantine fault-tolerance

techniques [67], [68]).

As previously mentioned, we take advantage of Intel SGX.

The use of an enclave could lead to memory constraints in our

implementation. However, as will be explained in Section V-E,

Omega is not constrained by the memory available to the

enclave. This is a fundamental advantage of Omega and a

key distinctive feature with regard to related systems such as

ShieldStore [54]. In Omega, only the top hash of a Merkel

tree is required to be stored in the enclave, the rest of the

tree is stored in RAM in the untrusted zone. Also, the cost

of Omega functions only grows logarithmically with the size

493

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



of the dataset, as opposed to ShieldStore, Speicher [55], and

Pesos [56], whose cost grows linearly. Scalability is a key

attribute of Omega.

B. Components of the Omega Implementation

An important aspect of Omega is how to maintain the

functionality of the system in case a fog node is compromised.

To tackle this issue, Omega takes advantage of Intel SGX,

as show in Figure 2; Omega generates all events inside the

enclave, i.e., it executes createEvent operations inside the

enclave. Moreover, all events take a digital signature obtained

inside the enclave using the private key of the fog node,

also stored inside the enclave. Omega includes the following

modules: i) a protocol used by clients to ensure that they are

interacting with the correct implementation of Omega running

on the enclave and not with a compromised version of the

same service (Section V-D); ii) two sub-components named

vault and event log that are used to preserve the Omega state

(Section V-E); iii) an implementation of each method in the

API (Section V-F).

C. Threat Model and Security Assumptions

The cloud and its services (AS, CA) are considered trust-

worthy, i.e., are assumed to fail only by crashing (essentially,

we make the same assumptions as the related work [11],

[16], [18]–[20]). Clients running on edge devices are also

considered trustworthy and may also fail only by crashing.

Due to their exposed location, fog nodes can suffer numer-

ous attacks and be compromised (an attacker might even gain

physical access to a fog node). We assume that fog nodes

may fail arbitrarily. They receive operations from clients and

communicate with the cloud, so we assume that a faulty fog

node can: modify the order of messages in the system; modify

the content of messages; repeat messages (replay attack);

tamper with stored data; and generate incorrect events. All

these actions, if not addressed carefully, may lead the system to

a faulty state, cause Omega to break the causal consistency of

the events, and therefore affect the correctness of applications

that use Omega.

We do not make assumptions about the security and time-

liness of the communication, except that messages are even-

tually received by their recipient.

We also assume that each fog node has a processor with

Intel SGX, which allows running a TEE designated enclave,

as depicted in Figure 2. Both clients and fog nodes have

asymmetric key pairs (Ku,Kr). The private key of the fog

node KF
r never leaves the enclave. For public key distribution,

we consider the existence of a Public Key Infrastructure (PKI).

We do the usual assumptions about the security of TEEs/en-

claves (data executed/stored inside the enclave has integrity

and confidentiality ensured) and cryptographic schemes (e.g.,

private keys are not disclosed, signatures cannot be created

without the private key, and the hash function is collision-

resistant). For obtaining digital signatures efficiently we use

Elliptic Curve Cryptography (ECC), specifically the ECDSA

algorithm [69] with 256-bit keys, which is recommended by

NIST [70]. We assume the existence of a collision-resistant

hash function. In practice we use SHA-256 [71], also recom-

mended by NIST [70]. We use the implementations provided

by the SGX SDK (inside the enclave) and Java (outside).

Interestingly, this involves converting public keys from little

endian (enclave) to big endian (Java).

D. Client Binding

Before a client invokes any method of the Omega API

must execute a client binding procedure. The purpose of this

procedure is to ensure that the client has the following guar-

antees: i) it has a secure connection to a software component;

ii) this software component is running on an enclave in an

Intel processor with SGX; iii) the software version is the

same version as the one registered in Intel’s attestation servers

(which is assumed to be the correct version of the software

component). This is also known as the attestation procedure

[30]. One limitation of the procedure defined by Intel is that it

involves multiple communication steps, including a connection

to Intel servers (to ensure that the enclave is created on an

Intel CPU). This is a cumbersome process which conflicts

with our goal of improving the overall event-ordering service

latency. Therefore, we have resorted to a different scheme to

perform client binding. Our solution is inspired in Excalibur

[72], a service designed for the Trusted Platform Module [73]

that also aims at preventing clients from attesting directly

all servers. However, Omega uses substantially different tech-

niques, in particular, Excalibur requires the transmission of

keys in the network, which is significantly less robust than

Omega’s protocol. The Omega client binding protocol relies

on the Attestation Server (AS) that runs in the cloud. The

AS runs Intel’s attestation protocol with each fog node. It

performs this attestation periodically, with a period that can

be configured. If the fog node passes the attestation, the AS

obtains from the CA a certificate with an expiration date lower

than the period, digitally signed with its private key KCA
r . The

attestation performed by the AS allows to establish a secure

connection with the enclave. The AS uses this connection to

acquire the public key of the fog node, which is added to

the previously mentioned certificate. This certificate is sent to

the Omega instance running on the enclave of the fog node

and stored in the untrusted part. Instead of running the Intel’s

attestation procedure Clients of the Omega service just ask the

Omega implementation to return the certificate that has been

issued by the AS.

E. The Omega Vault and the Event Log

Omega is required to safely store different pieces of infor-

mation, such as the private key associated with the certificate

signed by the AS, the last event generated by Omega, and also

the last event associated with each tag. However, the enclave

memory is limited to a few tens of megabytes and Omega

must keep an arbitrary number of tags. Therefore, Omega

requires a way to securely store the above information (in

particular the last event for an arbitrary number of tags). Also,

Omega must have access to events it has generated in the past,

494

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Merkle tree stored in the Omega vault in the untrusted zone of the
fog node (with N = 4).

given that clients can use the predecessorEvent method to

crawl the event history. To satisfy these requirements, Omega

uses two storage services with different properties, the vault

and the event log. In both cases, Omega stores events in the

untrusted zone. These events can be in plain text but we still

need integrity, i.e., to ensure that the untrusted zone cannot

modify these values in case the fog node is compromised.

Given that events are signed by Omega, the untrusted zone

cannot modify individual events; however it can delete events

or replace new events by older events. We now describe the

implementation of these two services.

The event log is just a record of all events generated, so we

opted to implement this component as a key-value store where

events are stored using their unique identifier (assigned by the

application) as key. Everytime Omega makes a look-up for

a specific event (for instance, when a client crawls the event

history) it simply checks the integrity of the event before the

value is returned to the client. If an event cannot be found in

the key-value store, this is a sign that the untrusted components

of the fog node have been compromised.

The vault is harder to implement, because it needs to

maintain the last event generated for each tag and its im-

plementation needs to ensure that the untrusted components

cannot replace the last event by an older event. Therefore,

checking the integrity of the event returned is not enough: the

Omega vault implementation must ensure that the values have

not been changed. At the logical level, this is achieved by

requiring the enclave to hash the vault every time it updates

its content; the hash is stored at the enclave itself. However, a

naive implementation that would actually keep a single hash

for the entire vault would not perform well because, as we

have noted, the application may use a large number of tags

and computing a hash of all these tags may take a long time.

Also, it is not straightforward to ensure that the hash function

yields the intended value if the values being hashed are to

many to fit inside the enclave and may be changed by the

adversary while the hash is being computed.

To address the problems above, the implementation of the

Omega vault uses the following techniques. First, the content

of the vault is stored as a Merkle tree [74]. While conceptually

the vault is just a table, maintained in the untrusted zone,

where each line is a tag (index) and a column for the event

(see Figure 3); in the implementation this table is splited

into N parts, and for each part, the enclave computes a hash

to ensure integrity. Since the enclave may not have enough

memory to store all these hashes, we use a Merkle tree such

that the enclave only needs to store the top hash. All the hashes

are calculated inside the enclave. In particular, SGX exhibits

an attribute user check that allows passing a pointer of the

untrusted zone memory space as an argument in an ECALL,

so that the enclave can access data that is in the untrusted part.

This way, the enclave can verify and generate the Merkle tree

hashes when needed while storing only the top hash.

When the enclave requires to modify one part of the table

it needs to: compute the Merkle tree to verify the data,

then change the data and, finally, recalculate a few of the

Merkle tree hashes (as many as the depth of the tree). These

operations must be performed in an atomic manner, otherwise

an attacker could change the table between the two Merkle

tree calculations and the enclave would not be able to detect

it. To ensure the atomicity of the combined operations, the

enclave calculates the hashes in parallel, i.e., it calculates the

old hash and the new hash of the table simultaneously so that

in the end it can simply replace the old one.

Our implementation of the Omega vault is optimized to

support multi-threaded operation. The tag address space is

sharded, and each shard is maintained in an independent

Merkle tree. This allows the concurrent execution of multiple

threads inside the enclave, as long as they are updating

different shards. This substantially improves the throughput

sustained by the Omega service. Note that, even when multiple

threads are used, Omega still ensures the serialization of

all events: the existence of a sequential history makes the

task of crawling the event log easier. This means that the

assignment of the last event identifier is still executed in

mutual exclusion inside the enclave. However, the fraction

of the Omega code that needs to be executed serially is so

small, when compared with the remaining code, that it does

not represent an impairment to performance. In fact, with the

number of cores we have tested (up to 16), we could not

observe any significant degradation resulting from the need to

serialize events.

F. Implementation of the Omega API

Clients invoke the Omega API via a client library. In this

way, clients do not need to be aware of the specifics for

communication with the Omega server. In fact, as we discuss

here, different methods use different communication primitives

to interact with the enclave. Also, some of the methods can be

executed directly by the client library and do not require any

message exchange with the enclave. In the next paragraphs,

we describe the implementation of each primitive in detail.

The methods registerTag and createEvent are the only

methods that modify the state of the Omega server in the

fog node. The method registerTag registers tags, so it has

to adjust the space allocated to the vault when the space

available is exhausted (recall that Omega keeps track of the

last event associated with each tag it observed); The method

495

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



createEvent is used to create a new event in the server. The

state of an event is a tuple that contains the following fields: i)

a unique timestamp, that is associated to the event by the server

(in the current implementation, this timestamp is a sequence

number); ii) the EventId ; iii) the associated EventTag (that

must be a tag previously registered via the registerTag event);

iv) the EventId of the last event generated by Omega; v) the

EventId of the last event generated by Omega with the same

tag. The identifiers of the predecessor events are maintained in

the Omega vault. The new tuple is signed with the private key

of the Omega server. Subsequently, the Omega server replaces

the identifier of the last event generated by the identifier of

the new event and replaces the identifier of the last event

generated with the given tag, by the new event. As noted, these

variables are maintained in the secured Omega vault. Then, the

tuple is also stored in the event log that is maintained in the

non-secured portion of the fog node. Finally, the tuple that

represents the event is returned to the client.

The methods lastEvent, lastEventWithTag, predeces-
sorEvent, and predecessorWithTag do not change the state

of the Omega. When the server receives a lastEvent request it

extracts the last event it has processed from the vault (i.e, a tu-

ple with the fields enumerated in the previous paragraph) to the

client. Similarly, when the server receives a lastEventWithTag
request, it uses the vault to extract the previous request

and sends it to the client. The requests predecessorEvent
and predecessorWithTag are executed collaboratively by the

client library and the server. The client library, that is aware of

the internal structure of the Event tuple, extracts the timestamp

of the event. This event identifier is sent to the server that

fetches the complete event tuple associated to that identifier

from the event log. Finally, the full tuple associated with the

desired event is returned to the client.

Lastly, the methods orderEvents, getId, and getTag re-

quire no communication with the enclave, and are imple-

mented directly on the library. The first method extracts the

timestamp field from each tuple, compares their values, and

returns the tuple with lower timestamp. The other two simply

return the corresponding fields from the input tuple.

Note that several of the methods described above require

the Omega server to extract information from the vault and/or

from the event log. The integrity of the information maintained

in the vault is ensured by construction. Also the server

can always check the validity of records extracted from the

event log (since each tuple is signed with the private key of

the server, which is safely stored in the enclave). However,

the Omega server cannot prevent the non-secured portion of

the fog node from deleting information from stable storage,

making the vault, the log, or both unavailable. In this case,

the part of Omega that runs inside the enclave detects the

corruption, stops operating, and reports an error.

VI. OMEGA KEY-VALUE STORE

OmegaKV is an extension to key-value stores that have

been designed for the cloud. It makes it possible to maintain

a cache of some key-value pairs in the untrusted space of

Fig. 4. OmegaKV service components.

a fog node while still ensuring that clients observe up-to-

date values of the cached objects, in an order that respects

causality. This is achieved by resorting to the services of

Omega. OmegaKV also ensures that all updates performed

by edge clients on the fog node, if they are propagated to the

cloud, are propagated in an order that respects causality. As

discussed in Section IV, Omega cannot ensure availability in

case the adversary compromises the fog node. For availability,

clients of OmegaKV should write on multiple fog nodes

eagerly or cache the updates they have made and replay them

later, if and only if they discover that the fog node has failed

to propagate those updates to the cloud. We omit those details

in this paper, given that here we use OmegaKV mainly to

illustrate the use of Omega and as a means to assess the

overhead introduced by this service.

OmegaKV is implemented by combining an untrusted local

key-value store and Omega. The key-value store resides in

the untrusted region of the fog node, and it is used to store

the values persistently. Omega is used to keep track of the

relative order of update operations that have been performed

locally. Figure 4 illustrates the architecture of OmegaKV, the

implementation of OmegaKV has components that run on a

client library and components that run of the fog node.

OmegaKV uses Omega as follows. Every update performed

on the local replica is associated with an event generated by

Omega. The keys used in the OmegaKV are associated to

EventTags in Omega; thus Omega will store securely each

update performed on each key. Also, for each update operation,

an EventId is generated as a function of the content of the

update; more precisely, if a client writes value v on some key

k, that update will be identified by hash (k⊕v). The operation

Algorithm 1 OmegaKV Implementation

1: function PUT(k, v)
2: event id ← hash (k ⊕ v).
3: e ← omega.createEvent (event id, k)
4: BEGIN ATOMIC

5: (old v, old e) ← local kv.get (k)
6: if old e = omega.orderEvents (old e, e) then
7: local kv.put (k, (v, e))

8: END ATOMIC

9: function GET(k)
10: (v, e) ← local kv.get (k)
11: event id ← getId (omega.lastEventWithTag (k))
12: hash val ← hash (k ⊕ v).
13: if event id = hash val then
14: return v
15: else
16: return error;

496

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



of the OmegaKV is summarized in Algorithm 1.

To put a value on the OmegaKV, the client starts by creating

an identifier for the put operation by hashing the concatenation

of the key and the value. Then it contacts Omega to serialize

the update operation with regard to other update operations

(in a serialization that respects causality). Finally, the server

replaces the old value of the key with the new one. The

event generated by Omega is stored locally with the update

value. This can be used subsequently to ensure that clients see

updates in the right order.

To perform the get operation, the server reads the value

and the associated event from the local key-value store and

queries Omega for the last event to be associated with the

target key. Then it uses the hash of the value that has been

safely stored by Omega and compares it with the hash of the

value returned by the untrusted code running on the fog node.

This allows the client to check that the untrusted zone has not

been compromised and that the value returned is, in fact, the

last value written on that key.

Finally, when the fog node ships the updates to the cloud,

these are shipped together with events generated by Omega.

This allows the cloud to apply the updates in the correct order

in the master replica (and in other fog nodes, if needed).

VII. EVALUATION

This Section is divided in two parts. First, we evaluate

Omega in isolation. The goal is to offer a better understanding

of the relative cost of the different components of the Omega

implementation. Second, we show the impact of using Omega

to secure a concrete service, namely OmegaKV. The goal is

to provide insights on the tradeoffs involved when executing

services securely on the cloud, insecurely on fog nodes, or

securely on fog nodes leveraging the services of Omega.

A. Experimental Setup

In our experiments, the fog node is a dedicated computer

with a 3.6GHz Intel i9-9900K CPU which has 16GB RAM

(this processor supports SGX). The fog node OS is Ubuntu

18.04.2 LTS 64bit with Linux kernel 5.0.8. We run the Intel

SGX SDK Linux 2.4 Release. The client machines are comput-

ers with 2.5GHz Intel i7-4710HQ CPU and 16GB RAM. Both

the clients and the fog node are deployed in our laboratory, in

the same network, emulating a 5G station communicating with

a terminal (i.e., a 1-hop communication1). Cloud services are

executed on a data center in London2, using Amazon Elastic

Compute Cloud (Amazon EC2) in t2.micro virtual machines

The Intel SGX SDK and the code for the enclave are in

C/C++. Omega was implemented in Java 11 and the Java

Native Interface (JNI) was used as a bridge between Java

and C++. For persistent storage we use the key-value store

1This has been tuned to be aligned with the expected latency of 5G networks
and future MEC networks [75].

2The datacenter was selected as the closest (in Round Trip Time (RTT))
to our lab. Our lab is located in Europe but not in the United Kingdom.
This setting captures many realistic scenarios where clients are diverted to
the closest datacenter in their region. The observed experimental latency is
consistent with latency values collected by others [76].

Fig. 5. Estimated optimal leaf size of the Merkle tree (vault of size 512).

Redis [65]. In the experiments we executed 5000 operations

and discarded the first and the last 500 to avoid outliers.

B. Omega Configuration and Performance

We first discuss how to configure the Merkle tree used

by Omega since the performance of the service is highly

dependent on this configuration. Then we provide an overview

for the performance of Omega using the selected configuration.

1) Merkle Tree Configuration: The Merkle tree used to

store events is used on most of the Omega operations. There-

fore, its proper tuning is key to the performance of the service.

To understand how to configure the Merkle tree it is important

to notice that any operation that involves checking/changing

the content of the Omega vault requires to perform a number

of computations that is a function of the size of the vault

but also on the size selected for the Merkle tree leafs. More

precisely, let x be the size of each tree leaf and VaultSize
be the maximum number of entries that the vault can store.

Any operation on the vault must compute the hash of the

affected leaf node and then the hashes of all inner nodes of

the tree. Computing the hash of the leaf node has a cost that

is linear with the leaf size. We denote this cost leafHash(x).
Since we have implemented the Merkle tree as a binary

tree, updating/checking an inner node involves hashing two

values. We denote the cost of computing the hash of an inner

node innerHash. The number of inner nodes that need to be

computed grows logarithmically with the size of the vault

and its exact value is log2(
VaultSize

x ). Therefore, the formula

that captures the cost of performing operation on the vault is

leafHash(x) + innerHash ∗ log2(VaultSize
x ).

The formula above suggests that the optimal size of the leaf

nodes of the Merkle should be very close to 1, given that the

cost of hashing the leaf node grows linearly, while the cost

of hashing the inner nodes grows logarithmically. Figure 5

depicts the estimated cost of vault operation, on a vault of

size 512 when the size of leaf nodes is varied from 1 to 512
entries. Note that when the leaf size is 1, the height of the

Merkle tree is 9 and when the size of the leaf is 512 the entire

vault is stored in a single leaf. The values in this figure were

obtained using the formula above, that was fed with results

obtained experimentally for the parameters leafHash(x) and

innerHash. The values suggest that leaves should not be large;

in this case, for a vault size of 512, the formula suggests that

8 is the best leaf size.

Based on this observation, we decided to run multiple

experiments on the real system, where we measured the

497

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Performance of the Merkle tree.

Fig. 7. Scalability of Omega’s createEvent implementation (1 to 16 threads).

performance of the Omega vault implementation with different

leaf sizes and different vault sizes. The results are depicted in

Figure 6. As it can be observed, the best results are obtained

for leaf sizes of 2 and 4 (in fact, the differences in performance

for these two values is not significant) but quickly drops if

larger leaves are used. Therefore, in all other experiments, we

have used a leaf size of 2.

2) Executing Omega Operations: We now present the

results from two experiments that aim at assessing the per-

formance of the Omega implementation, in particular of the

operations that are mainly executed in the enclave. We have

measured the performance of the createEvent operation, as this

is the most expensive of all operations provided by Omega and

involves updating the Omega vault.

In the first experiment, we show that the performance of

Omega can scale as more threads are allocated to the service.

Figure 7 depicts the maximum number of operations per

second that our implementation can execute as the number

of threads increase. It can be seen that the throughput of the

system increases almost linearly up the 16 threads (the number

of available cores in the machine that we have used). This

is possible because cryptographic operations are performed in

parallel within the enclave and the Omega vault is sharded and

Fig. 8. Operation latency for createEvent.

updates to different shards can also be executed concurrently,

without blocking each other. Note also that the derivative

of the line is below 1; this is due to the overhead induced

by the synchronization required to enforce the serialization

guarantees offered by Omega.

In the second experiment, we measure the relative impact

of the latency introduced by the Omega’s implementation

in the client operation. Figure 8 shows how each individual

software component that is executed in the client critical path

contributes to the latency. This breakdown can be used to

estimate the performance of Omega in other networks. Since

the fog node is located one-hop away from the clients, the time

spent in the network is not the main contributor to the latency

observed by clients. The time lost from the Java layer to

enclave is also small (from 1ms to 2ms). The time lost doing

context switch is also considerably short, mainly because the

enclave keeps very little state (taking advantage of the Omega

Vault) and there is a small number of parameters passing in

and out of the enclave (as describe in Section V-F). Thus, the

main contributor to the latency are the cryptographic functions

executed in the client and in the enclave. In the client, 2ms–

2.5ms are required to compute and verify digital signatures.

On the server side, most of the time is also spent in the

processing digital signatures.

The observed latencies match the requirements of edge

applications. For instance, in vehicular applications, safety

application require warnings to be generated in less than

100ms [77], [78]; as depicted in Figure 8, creating an event

with Omega has a latency close to 5ms, which is considerably

below the 100ms threshold, allowing to create and deliver

multiple events to vehicles using Omega on an RSU/fog node

and still meet the deadline. Also, the overall connection time

of a vehicle with an RSU is tipically around 18-21s for a

vehicle moving at 120 km/h [79], [80], which allows a vehicle

to access other types of events such as congestion control,

driving conditions, curve speed, and others. The 5ms Omega

latency also matches the maximum tolerable delay for many

other edge applications, such as the value of ∼7ms required

for Virtual Reality gaming [81], [82] and the ∼10ms needed

for Augmented Reality apps [83].

C. Performance of the OmegaKV

We now measure the impact of using Omega to make other

services secure. For this purpose we compare the performance

of OmegaKV, our Omega-based key-value store for the fog,

with a similar non-secured service also running in the fog

node (denoted OmegaKV NoSGX), and with a version where

security is achieved by running the service on the cloud

(denoted CloudKV). All implementations of the key-value

store have been developed in Java and use Redis [65] to

keep their state persistent. Also, all system use messages that

are cryptographically signed using our protocol described in

Section V-F. The major difference among the implementations

are that CloudKV and OmegaKV NoSGX do not use the

enclave (nor the Merkle tree used to implement the Omega

498

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 9. Access pattern throughput (writes/reads).

Fig. 10. Write operation latency of a fog node and cloud.

Vault), they make no effort to verify the integrity of stored

data, and they do not need to use JNI interface.

Figure 9 presents the maximum throughput that a client

can achieve using the three systems. In the CloudKV imple-

mentation, the latency to the data center severely affects the

throughput of the client; in our experiments the throughput of

a cloud-based implementation is roughly 25% of the fog-based

implementations. This was expected as one of the main moti-

vations for using fog-nodes is to reduce the latency observed

by clients. Interestingly, although the security mechanisms

that are used in the Omega implementation introduced some

amount of overhead (see the discussion in Section VII-B),

this overhead is partially diluted when Omega is just a part

of a larger system, that has many other sources of latency.

In our experiments, OmegaKV offers a throughput that is

approximately 18% smaller than the non-secured version of

the same service but that is, nevertheless, much higher than

the throughput supported by CloudKV.

Figure 10 compares the latency that a client experiences

when using the services OmegaKV, OmegaKV NoSGX, and

CloudKV. For a better understanding of the graph, we measure

the ping operation to calculate the round-trip time from the

client to the fog node and to the cloud, this is shown as

HealthTest line for the fog node and CloudHealthTest for the

cloud. As expected the client can perform operations with

much lower latency by using the fog node rather than using the

CloudKV services that are in a data center, a reduction from

36ms to 12ms, close to 67%. OmegaKV has higher latency

than OmegaKV NoSGX, due to the use of the enclave. In

absolute value we observe an increase in latency in the order

of 4ms, which is non-negligible but still significantly smaller

than the latency introduced by wide-area links. This allows

Fig. 11. Write operation latencies w/ and w/o SGX.

OmegaKV to offer latency values in the 5ms–30ms range

required by time-sensitive edge applications [4].

We also tested the performance of OmegaKV with different

data sizes up to 512 MB (this is the maximum object size

supported by Redis, our underlying persistent store). Results

are shown in Figure 11. For this experiment we compared

OmegaKV against OmegaKV NoSGX. It is visible that our

system follows the same latency as the traditional key-value

store. This happens because, with large files, the overhead of

the enclave and cryptographic operations becomes negligible

when compared with the data transfer costs. It should be noted

that OmegaKV transfers only one hash of the object to Omega;

the object with tens of megabytes is stored in Redis.

VIII. CONCLUSIONS

Fog computing can pave the way for the deployment of

novel latency-sensitive applications for the edge, such as

augmented reality. However, in order to fulfill its potential, we

need to address the vulnerabilities that emerge when deploying

a large set of servers on many different locations that cannot

be physically secured with the same level of trust than cloud

premises. This paper makes a step in this direction by describ-

ing the design and implementation of a secure service that

can be executed on fog nodes in a secure manner leveraging

on the properties of trusted executions environments such as

Intel SGX. In particular, we have proposed Omega, an event

ordering service that can be used as a building block to build

higher level abstractions. With the dual purpose of illustrating

the use of Omega and of assessing its performance when

used in practice, we have also designed and implemented

OmegaKV, a causally consistent key-value store for the edge.

Our evaluation shows that, despite the costs incurred with the

use of the enclave, the use of Omega based applications can

still provide much smaller latency and higher throughput than

current cloud based solutions.

ACKNOWLEDGMENTS

This work was partially supported by the Fundação para a Ciência e
Tecnologia (FCT) via project COSMOS (via the OE with ref. PTDC/EEI-
COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na
sua componente FEDER” with ref. Lisboa-01-0145-FEDER-029271), Project
NG-STORAGE (PTDC/CCI-INF/32038/2017), project UIDB/ 50021/ 2020,
and by the European Commission under grant agreement number 830892
(SPARTA).

499

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Communications of the ACM, vol. 53, no. 4, 2010.

[2] Google, “Data center locations,” https://www.google.com/about/
datacenters/inside/locations/index.html, accessed: 2019-10-04.

[3] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “Depsky:
Dependable and secure storage in a cloud-of-clouds,” ACM Transactions
on Storage, vol. 9, no. 4, 2013.

[4] G. Ricart, “A city edge cloud with its economic and technical consid-
erations,” in Proceedings of the International Workshop on Smart Edge
Computing and Networking, Kona, HI, USA, Jun. 2017.

[5] Y. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5G,” ETSI white paper, vol. 11,
no. 11, 2015.

[6] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, 2014.

[7] Cisco, “Cisco delivers vision of fog computing to accelerate value from
billions of connected devices. press release,” https://newsroom.cisco.
com/press-release-content?type=webcontent\&articleId=1334100, Jan.
2014, accessed: 2019-10-04.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the Workshop on
Mobile Cloud Computing, Helsinki, Finland, Aug. 2012.

[9] J. Zhang, B. Chen, Y. Zhao, X. Cheng, and F. Hu, “Data security
and privacy-preserving in edge computing paradigm: Survey and open
issues,” IEEE Access, vol. 6, 2018.

[10] M. Mukherjee, R. Matam, L. Shu, L. Maglaras, M. A. Ferrag, N. Choud-
hury, and V. Kumar, “Security and privacy in fog computing: Chal-
lenges,” IEEE Access, vol. 5, no. 6, 2017.

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops,” in Proceedings of the ACM Symposium on Operating Systems
Principles, Cascais, Portugal, Oct. 2011.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, Hollywood, CA, USA, Oct. 2012.

[13] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the ACM International Conference on Management
of data, Indianapolis, IN, USA, Jun. 2010.

[14] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li et al., “TAO: Facebook’s
distributed data store for the social graph,” in Proceedings of the USENIX
Annual Technical Conference, San Jose, CA, USA, Jun. 2013.

[15] A. Chandler and J. Finney, “On the effects of loose causal consistency
in mobile multiplayer games,” in Proceedings of the ACM Workshop on
Network and System Support for Games, Hawthorne, NY, USA, Oct.
2005.

[16] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer, “Kronos: The design
and implementation of an event ordering service,” in Proceedings of
the ACM European Conference on Computer Systems, Amsterdam, The
Netherlands, Apr. 2014.

[17] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, 1978.

[18] M. Bravo, L. Rodrigues, and P. Van Roy, “Saturn: A distributed metadata
service for causal consistency,” in Proceedings of the ACM European
Conference on Computer Systems, Belgrade, Serbia, Apr. 2017.

[19] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro, “Cure: Strong semantics meets high
availability and low latency,” in Proceedings of the IEEE International
Conference on Distributed Computing Systems, Nara, Japan, Jun. 2016.

[20] S. Almeida, J. a. Leitão, and L. Rodrigues, “Chainreaction: A causal+
consistent datastore based on chain replication,” in Proceedings of
the ACM European Conference on Computer Systems, Prague, Czech
Republic, Apr. 2013.

[21] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” Acm Sigact News,
vol. 33, no. 2, 2002.

[22] H. Attiya, F. Ellen, and A. Morrison, “Limitations of highly-available
eventually-consistent data stores,” in Proceedings of the ACM Sympo-
sium on Principles of Distributed Computing, Donostia-San Sebastian,
Spain, Jul. 2015.

[23] P. Mahajan, L. Alvisi, M. Dahlin et al., “Consistency, availability, and
convergence,” University of Texas at Austin Tech Report, vol. 11, 2011.

[24] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, privacy, and fairness
in fog-based vehicular crowdsensing,” IEEE Communications Magazine,
vol. 55, no. 6, 2017.

[25] W. Zhou, Y. Jia, A. Peng, Y. Zhang, and P. Liu, “The effect of IoT new
features on security and privacy: New threats, existing solutions, and
challenges yet to be solved,” IEEE Internet of Things Journal, vol. 6,
no. 2, 2018.

[26] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, 1982.

[27] D. Malkhi and M. Reiter, “Byzantine quorum systems,” in Proceedings
of the ACM Symposium on Theory of Computing, El Paso, TX, USA,
May 1997.

[28] B. Gold, R. Linde, R. Peeler, M. Schaefer, J. Scheid, and P. Ward,
“A security retrofit of VM/370,” in Proceedings of the AFIPS National
Computer Conference, New York, NY, USA, Jun. 1979.

[29] Z. Ning, J. Liao, F. Zhang, and W. Shi, “Preliminary study of trusted ex-
ecution environments on heterogeneous edge platforms,” in Proceedings
of the ACM/IEEE Workshop on Security and Privacy in Edge Computing,
Bellevue, WA, USA, Oct. 2018.

[30] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative technology
for CPU based attestation and sealing,” in Proceedings of the Interna-
tional Workshop on Hardware and Architectural Support for Security
and Privacy, Tel-Aviv, Israel, Jun. 2013.

[31] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution.” in Proceedings of the Interna-
tional Workshop on Hardware and Architectural Support for Security
and Privacy, Tel-Aviv, Israel, Jun. 2013.

[32] Intel Corporation, “Intel’s fog reference design overview,”
https://www.intel.com/content/www/us/en/internet-of-things/
fog-reference-design-overview.html, accessed: 2019-10-04.

[33] K. Bhardwaj, M.-W. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan, “Fast, scalable and secure onloading of edge functions
using airbox,” in Proceedings of the IEEE/ACM Symposium on Edge
Computing, Washington DC, USA, Oct. 2016.

[34] R. Ahmed, Z. Zaheer, R. Li, and R. Ricci, “Harpocrates: Giving out
your secrets and keeping them too,” in Proceedings of the ACM/IEEE
Symposium on Edge Computing, Bellevue, WA, USA, Oct. 2018.

[35] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Foundations
of hardware-based attested computation and application to SGX,” in
Proceedings of the IEEE European Symposium on Security and Privacy,
Saarbrücken, Germany, Mar. 2016.

[36] Intel Corporation, “Intel(r) software guard extensions developer
reference for Linux* OS,” https://download.01.org/intel-sgx/linux-2.
3/docs/Intel SGX Developer Reference Linux 2.3 Open Source.pdf,
accessed: 2019-10-04.

[37] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-
order execution,” in Proceedings of the USENIX Security Symposium,
Baltimore, MD, USA, Aug. 2018.

[38] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in Proceedings of
the European Symposium on Research in Computer Security, Heraklion,
Greece, Sep. 2016.

[39] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell et al., “SCONE:
Secure linux containers with intel SGX,” in Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation, Savan-
nah, GA, USA, Nov. 2016.

[40] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza, “Rollback and
forking detection for trusted execution environments using lightweight
collective memory,” in Proceedings of the IEEE/IFIP International
Conference on Dependable Systems and Networks, Denver,CO,USA,
Jun. 2017.

[41] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,

500

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 



D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer, “ROTE: Rollback
protection for trusted execution,” in Proceedings of the USENIX Security
Symposium Security, Vancouver, BC, CANADA, Aug. 2017.

[42] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, “Orbe: Scalable
causal consistency using dependency matrices and physical clocks,” in
Proceedings of the ACM Symposium on Cloud Computing, San Jose,
CA, USA, Oct. 2013.

[43] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, “Gentlerain: Cheap
and scalable causal consistency with physical clocks,” in Proceedings
of the ACM Symposium on Cloud Computing, Seattle, WA, USA, Nov.
2014.

[44] C. Fidge, “Logical time in distributed computing systems,” Computer,
vol. 24, no. 8, 1991.

[45] F. Mattern, “Virtual time and global states of distributed systems,” in
Proceedings of the International Workshop on Parallel and Distributed
Algorithms, Gers, France, Oct. 1988.

[46] S. S. Kulkarni, M. Demirbas, D. Madappa, B. Avva, and M. Leone,
“Logical physical clocks,” in Proceedings of the International Confer-
ence on Principles of Distributed Systems, Cortina, Italy, Dec. 2014.

[47] B. Sanders, “The information structure of distributed mutual exclusion
algorithms,” ACM Transactions on Computer Systems, vol. 5, no. 3,
1987.

[48] M. Reiter and L. Gong, “Securing causal relationships in distributed
systems,” Computer Journal, vol. 38, no. 8, 1995.

[49] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, optimistic,
causal, and optimal,” IEEE Transactions on Software Engineering,
vol. 24, no. 2, 1998.

[50] B. Lee, T. Park, H. Y. Yeom, and Y. Cho, “An efficient algorithm for
causal message logging,” in Proceedings of the IEEE Symposium on
Reliable Distributed Systems, West Lafayette, Indiana, Oct. 1998.

[51] E. Ahmed and M. H. Rehmani, “Mobile edge computing: Opportunities,
solutions, and challenges,” Pervasive Computing, vol. 70, 2017.

[52] S. Mortazavi, M. Salehe, C. Gomes, C. Phillips, and E. de Lara,
“Cloudpath: A multi-tier cloud computing framework,” in Proceedings
of the ACM/IEEE Symposium on Edge Computing, San Jose, CA, USA,
Oct. 2017.

[53] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal
memory: definitions, implementation, and programming,” Distributed
Computing, vol. 9, no. 1, 1995.

[54] T. Kim, J. Park, J. Woo, S. Jeon, and J. Huh, “Shieldstore: Shielded
in-memory key-value storage with SGX,” in Proceedings of the ACM
European Conference on Computer Systems, Dresden, Germany, Mar.
2019.

[55] M. Bailleu, J. Thalheim, P. Bhatotia, C. Fetzer, M. Honda, and
K. Vaswani, “Speicher: Securing LSM-based key-value stores using
shielded execution,” in Proceedings of the USENIX Conference on File
and Storage Technologies), Boston, MA, USA, Feb. 2019.

[56] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and
C. Fetzer, “Pesos: policy enhanced secure object store,” in Proceedings
of the ACM European Conference on Computer Systems, Porto, Portugal,
Apr. 2018.

[57] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Transactions on Programming Languages
and Systems, vol. 12, no. 3, 1990.

[58] A. Nanda, D. Puthal, J. J. Rodrigues, and S. A. Kozlov, “Internet of
autonomous vehicles communications security: overview, issues, and
directions,” IEEE Wireless Communications, vol. 26, no. 4, 2019.

[59] R. G. Engoulou, M. Bellaı̈che, S. Pierre, and A. Quintero, “Vanet
security surveys,” Computer Communications, vol. 44, 2014.

[60] C. Barba, M. Mateos, P. Soto, A. Mezher, and M. Igartua, “Smart city for
VANETs using warning messages, traffic statistics and intelligent traffic
lights,” in Proceedings of the 2012 IEEE Intelligent Vehicles Symposium,
Alcala de Henares, Spain, June 2012, pp. 902–907.

[61] M. S. Sheikh, J. Liang, and W. Wang, “A survey of security services, at-
tacks, and applications for vehicular ad hoc networks (vanets),” Sensors,
vol. 19, no. 16, 2019.

[62] R. S. Raw, M. Kumar, and N. Singh, “Security challenges, issues and
their solutions for vanet,” International journal of network security &
its applications, vol. 5, no. 5, 2013.

[63] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of the ACM
Symposium on Operating Systems Principles, Stevenson, WA, USA, Oct.
2007.

[64] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
2010.

[65] Redis, “Key-value store,” http://redis.io, accessed: 2019-10-04.
[66] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd,

“I can’t believe it’s not causal! scalable causal consistency with no
slowdown cascades,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation, Boston, MA, USA,
Mar. 2017.

[67] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation, New Orleans, LA, USA, Feb. 1999.

[68] L. Zhou, F. B. Schneider, and R. Van Renesse, “COCA: A secure
distributed online certification authority,” ACM Transactions Computer
Systems, vol. 20, no. 4, 2002.

[69] ANSI, “X9.62-1998 public key cryptography for the financial services
industry: The elliptic curve digital signature algorithm (ECDSA),” Sep.
1998.

[70] E. Barker and A. Roginsky, “Transitioning the use of cryptographic
algorithms and key lengths,” NIST, Special Publication 800-131 A r2,
Mar. 2019.

[71] NIST, “FIPS 180-4, Secure Hash Standard,” Aug. 2015.
[72] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu, “Policy-

sealed data: A new abstraction for building trusted cloud services,” in
Proceedings of the USENIX Security Symposium, Bellevue, WA, USA,
Aug. 2012.

[73] T. C. Group, “Tpm main specification level 2 version 1.2, revision 130,”
2006.

[74] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proceedings of the Conference on the Theory and Appli-
cation of Cryptographic Techniques, Amsterdam, The Netherlands, Apr.
1987.

[75] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey
on low latency towards 5g: Ran, core network and caching solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, 2018.

[76] “AWS inter-region latency,” https://www.cloudping.co/, accessed: 2020-
03-02.

[77] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and
T. Weil, “Vehicular networking: A survey and tutorial on requirements,
architectures, challenges, standards and solutions,” IEEE communica-
tions surveys & tutorials, vol. 13, no. 4, 2011.

[78] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, 2015.

[79] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected
vehicles: Solutions and challenges,” IEEE internet of things journal,
vol. 1, no. 4, 2014.

[80] J. Ott and D. Kutscher, “Drive-thru internet: Ieee 802.11 b for” automo-
bile” users,” in Proceedings of the IEEE INFOCOM 2004, Hong Kong,
Mar. 2004.

[81] S. Mangiante, G. Klas, A. Navon, Z. GuanHua, J. Ran, and M. D. Silva,
“Vr is on the edge: How to deliver 360 videos in mobile networks,” in
Proceedings of the Workshop on Virtual Reality and Augmented Reality
Network, Los Angeles, CA, USA, Aug. 2017.

[82] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, 2017.

[83] R.-S. Schmoll, S. Pandi, P. J. Braun, and F. H. Fitzek, “Demonstration
of vr/ar offloading to mobile edge cloud for low latency 5g gaming
application,” in Proceedings of the IEEE Consumer Communications &
Networking Conference, Las Vegas, NV, USA, Jan. 2018.

501

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on March 12,2023 at 12:32:23 UTC from IEEE Xplore.  Restrictions apply. 


