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Abstract—With the advent of Edge Computing, suitable,
practical, and novel abstractions are required for applications
to leverage the existing computational power at the edge. In
particular, applications in the domains of smart cities and the
Internet of Things (IoT) can rely on devices in the vicinity
of data consumers and producers for their operation. While
these devices are expected to be equipped with wireless radios,
network infrastructure might be unavailable in many scenarios.
In those cases, devices must rely on wireless ad hoc networks for
coordination and cooperation. In this context, one of the most
important primitives is the broadcast of messages, that can be
leveraged as a building block to devise more complex distributed
services and applications.

The literature on wireless ad hoc broadcast algorithms is
quite vast, with many different algorithms being proposed which
explore or combine different techniques or features in their
operation. While such protocols are becoming increasingly rele-
vant, understanding how they relate among them is complicated.
To address this challenge, in this paper, we introduce a novel
framework that allows to abstract the operation of wireless ad hoc
broadcast protocols. Leveraging on our framework, we explore
a particularly interesting class of these protocols: neighbor-
aware ad hoc broadcast protocols; of which we propose 4 novel
protocols. Finally, we rely on a materialization of our framework
to implement prototypes of these protocols and experimentally
study their performance in a testbed composed of 21 Raspberry
Pi 3 - model B.

Index Terms—Broadcast Algorithms, Wireless ad hoc, Relia-
bility, Experimental Evaluation

I. INTRODUCTION

The edge computing paradigm [1] emerged to address

the limitations of current cloud-based applications. These

applications produce high volumes of data [2] which render

cloud infrastructures unable to timely process and provide

responses to application clients. As such, the edge comput-

ing paradigm promotes moving computations beyond cloud

datacenter boundaries towards data producers and consumers.

Edge computing however, can be materialized across very

distinct scenarios involving different hardware [3], from fog

computing [4] to IoT networks [5], [6] where IoT devices

may own some computational power. In this paper, we focus

on a concrete scenario of edge computing, where wireless-

capable commodity devices form a wireless ad hoc network

[7]. Such scenario can be found in application domains related
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with smart cities and IoT, where devices do not have access

to network infrastructure.

To enable the emergence of novel applications leveraging

the computational resources in wireless-capable devices, ade-

quate abstractions should be provided. A fundamental prim-

itive for supporting distributed applications is the broadcast

of messages [8], where a message sent by a single process

is collaboratively disseminated and delivered by all processes

in the system. Broadcast primitives are an essential building

block of complex distributed applications and protocols [9]–

[13] as a means to achieve coordination and collaboration

among processes.

Unfortunately, ensuring that all processes deliver a message

in a system where nodes interact through a shared wireless

medium, without an access point, is a non-trivial task. This

is because when two processes (in two distinct nodes) within

transmission range of each other, transmit a message at the

same time, a collision might occur, leading those messages to

not be delivered to any other process within range, or only to

a subset. As we discuss further ahead, when collaboratively

broadcasting a message throughout the network, nodes are

more likely to attempt to retransmit a message simultaneously,

increasing the probability of collision. Furthermore, if retrans-

mission policies, akin to the ones employed in wired networks

with explicit acknowledgments (e.g., TCP acknowledgement

and retransmission mechanisms), to recover lost messages

are used, the possibility to saturate the wireless medium

grows even further, potentially leading to the well-known

broadcast storm problem [14], effectively rendering any form

of communication among processes impossible.

With the goal to avoid broadcast storms, some broadcast

protocols that were previously proposed in the context of

wireless ad hoc networks [15]–[17], tend to be probabilistic

in nature, avoiding explicit acknowledgment of messages

and avoiding all processes to perform retransmissions, while

exploring complementary mechanisms to maximize their reli-

ability (i.e., ensure that the vast majority of processes delivers

every broadcasted message). This has led to the emergence of

many variants of those techniques and protocols that explore

them in different combinations and/or using different param-

eterizations, leading to a vast number of different alternatives

(e.g., [15], [16], [18]–[22]). We note, however, that many

broadcast protocols present a similar design pattern, being

composed by a retransmission policy, which defines the (local)

strategy of each process for deciding when to retransmit, or
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not, a given received message, and a delay policy, that encodes

when that decision should be made.

This common design pattern motivated us to devise a

generic framework for specifying wireless ad hoc broadcast

algorithms. The framework captures some of the key aspects

that govern the operation of several wireless ad hoc broadcast

protocols, which are the retransmission delay, the retrans-
mission context, and the retransmission policy employed

by the protocol. These three aspects work together for the

efficient operation of a broadcast protocol: the retransmis-
sion delay provides a waiting period to gather environmental

information, which is dictated by the retransmission context
(e.g., number of neighboring nodes within transmission range),

and leveraged by a retransmission policy to decide if a

retransmission should proceed or not. Our framework pro-

motes these aspects to be parameters for a generic broadcast

protocol, enabling a wide range of protocols to be easily

specified. We note, however, that such aspects can also be

parameterized as “empty”, when they are not required by a

protocol. Furthermore, to promote the focus of the framework

over the key aspects of broadcast protocols, the framework

abstracts common, but essential, aspects that are prevalent

in the design of such protocols, including the tracking of

messages already delivered (to avoid duplicates); the gathering

of environmental information that is provided (locally) to each

protocol, which is used to affect its local decisions; and the

scheduling of retransmissions.

Our framework also allows for efficient and modular im-

plementation of these protocols. To this end, we have built a

prototype of a small kernel for designing, implementing, and

executing broadcast protocols in wireless ad hoc networks,

whose design follows directly from the concepts defined by

our framework. We leveraged our framework, and the protocol

kernel prototype derived from it, to study and extend the

existing state of the art for a particular area of the design

space of wireless ad hoc broadcast protocols: neighbor-aware

protocols. These protocols take into consideration information

regarding the local neighborhood of a node (which can be

obtained by static configuration or through the use of a

simple companion protocol) to govern the execution of the

distributed broadcast process, in particular, in the definition

of the retransmission policy and associated delay, employed

by each node. We explore 4 novel variants of this class of

protocols, specifying them, and performing an experimental

study of their performance in a realistic scenario with real

devices (Raspberry Pi 3 - model B).

The remainder of the paper is structured as follows: Sec-

tion II discusses the key properties and different techniques

employed in the design of broadcast algorithms for wireless

ad hoc networks; Section III provides an overview of our

framework to model the operation of wireless ad hoc broadcast

protocols; Section IV delves into the class of neighbor-aware

broadcast algorithms (which we dub NABA), presenting a set

of novel variants in this class of algorithms; Section V provides

a practical evaluation of broadcast algorithms; Section VI

discusses the related work; Section VII concludes the paper.

II. BROADCASTING IN WIRELESS NETWORKS

In a distributed system, broadcast protocols aim at delivering

messages, that can be sent by any process, to all processes.

In a wireless ad hoc network, processes communicate via the

exchange of messages through the wireless medium. In this

context, it is frequent to leverage on one-hop broadcast [23],

which allows a node to send the same message to all other

nodes within its radio transmission range (neighbours), with a

single transmission. The use of one-hop broadcast is relevant

since it saves power and reduces the occupation of the wireless

medium when compared with sending the message point-to-

point to all neighboring nodes. In this paper, we consider

multi-hop networks, where not all nodes are directly reachable

by every other node. For a message to reach all nodes in the

system in such scenarios, nodes have to retransmit received

messages such that messages transverse the network, and

are received by all participants. Naturally, this retransmission

process might lead some nodes to receive a message more

than once. Such redundant messages should not be delivered

to application layers [8].

A. Performance Metrics and Retransmission Policies

Collaborative broadcast protocols, as it is the case of

wireless ad hoc broadcast protocols, strive to achieve two

conflicting goals. On the one hand, these protocols strive to

maximize the reliability of the broadcast process, which usu-

ally is defined as the fraction of (correct) nodes that delivered

a broadcast message [24]. On the other hand, these protocols

aim at minimizing the cost of each broadcast message, which

is defined as being the number of individual retransmissions

that are required to spread the message through the entire

network. The conflicting nature of these goals derives from the

lack of independence between them, for instance, it is possible

to lower the transmission cost of a broadcast protocol by never

retransmitting the message but this will have a negative impact

on the reliability of that protocol.

Due to this tension between goals of broadcast protocols,

at their core one can usually find a retransmission policy, that

allows a node to make a (typically local) decision regarding

its need to retransmit a message received from another node.

Intuitively, such policies will strive to avoid retransmissions

that are not going to lead to message deliveries for the appli-

cation (i.e., transmissions that will not reach nodes that have

not yet received the message) and/or ensure that the message is

retransmitted if there are nodes within the transmission range

that have not received that message yet. In the following, we

discuss different retransmission policies that can be found in

the literature.

Usually, nodes will only consider retransmitting a message

when they receive it for the first time. However, and as we

detail further ahead, some policies might consider the number

of received duplicates of a message to be retransmitted to make

their decision.

1) Always Yes: The simplest retransmission policy that

can be employed is to have every node in the system to

retransmit each received message. This is the policy implicitly
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associated with flooding [14] protocols. Although this policy

is simple and (potentially) robust, it promotes a high cost for

the broadcast process.

2) Probabilistic: Another frequently observed alternative is

to rely on a probabilistic policy, where each node retransmits

each message (observed for the first time) with a given

probability p, where p is a protocol parameter. This approach

is employed by protocols that follow gossip-based approaches

[20], [25]–[27]. It reduces the cost of the broadcast process,

at the risk of impairing reliability if nodes, that are essential

for the success of the dissemination process, decide to not

retransmit the message.

3) Counting: Counting is a policy that relies on counting

the number of observed duplicates for a message (for a given

period of time) to make a more informed decision regarding

the need to retransmit that message [14], [15], [25], [28].

Usually, such policy will rely on a parameter c which is

the minimum number of counted duplicate messages that are

necessary for a node to decide not to retransmit a message.

While the intuition of such policy is easy to grasp, it does

not take into account the local topology of the network, and

hence, it may lead nodes that are bridging different partitions

of the network to decide not to transmit messages, disrupting

the reliability of the broadcast process.

4) Distance-based: Some broadcast protocols [14], [29]

take into account the distance between the sending and the

receiving nodes to bias the decision of the later to retransmit

a given message. The intuition associated with such policy

is that nodes that are farther from the sender will cover a

higher number of new nodes if they retransmit a message,

compared with nodes that are closer to it. Hence, this policy

will take into account the distance to the sender and retransmit

a message only if this distance is above a threshold d or adjust

locally the probability of retransmission (p) to be proportional

to the distance. While this policy can be highly effective

[29] it requires nodes to either know their positions (through

GPS for instance) or to infer their relative distances by taking

into account the power of the received radio signal (which is

employed in some variants of PAMPA [29]). However, the

hardware support to obtain such information might not be

available in commodity devices.

5) Location-based: This policy [18] is similar to the

distance-based policy, however, instead of taking into account

only the relative distance between the sender and the receiver

to perform retransmission decisions, it requires nodes to

have complete knowledge of their positions and surroundings,

which allows them to make a more precise decision on the

utility of their message’s retransmissions.

6) Neighbor-based: Neighbor-based retransmission poli-

cies [21], [30], [31] rely on topology information, obtained by

each node, regarding the nodes in direct range of transmission,

or up to some number of hops in the network, to compute

the utility of a message retransmission. This information can

be leveraged in a different number of ways: from using the

observed number of direct neighbors to control the probability

of retransmission (combining this with probabilistic retrans-

mission policies) or to adjust the number of duplicate messages

that a node has to receive to cancel its own retransmission

(combining this approach with counting policies described

above). We will revisit this class of retransmission policies in

Section IV where we also propose novel variants of wireless

ad hoc broadcast protocols leveraging on these policies.

B. Environmental Sensing and Retransmission Context

Some of the retransmission policies discussed above re-

quire nodes to gather information (even if this information

is imprecise) on their execution environment. In particular: i)
Distance-based policies need information concerning the rela-

tive distance between the message sender and receiver to make

a retransmission decision; ii) Location-based policies require

information on the position of nodes in some space coordinates

system for their operation; and finally, iii) Neighbor-based
policies require information about neighboring relations with

other nodes up to a given horizon (i.e., 1−hop which is direct

neighbors, 2 − hop which includes knowing the neighboring

relations of their direct neighbors, or generally n−hop where

if n ≥ to the diameter of the network implies that a node has

full knowledge about the system topology).

We note that, contrary for instance, to counting message

duplicates, which can be easily handled at the wireless ad

hoc broadcast protocol level, such information requires ex-

ternal support, either external (static) configuration provided

by users, access to additional information extracted from the

device hardware (e.g., from the radio to extract the strength

of the radio signal or from a GPS device), or even by a

companion protocol being executed alongside the broadcast

protocol. To these external sources of information, that support

the execution of broadcast protocols leveraging particular

retransmission policies, we call retransmission context.
While there are many possible retransmission contexts that

can be useful for devising wireless ad hoc broadcast protocols

in general, and retransmission policies in particular, in this

paper we focus on the three previously identified contexts:

distance context, location context, and neighbor-aware context.

C. Avoiding Broadcast Storms and Retransmission Delay

Avoiding broadcast storms is essential to achieve high

reliability for broadcast protocols. Network collisions in the

wireless medium will lead to message losses, which might af-

fect negatively the assumptions of protocols and, consequently,

their reliability. Network collisions happen when nodes within

transmission range decide to transmit a message at the same

time. As such, a simple solution to avoid these phenomena

is to delay retransmissions of messages (using some jitter) to

minimize the probability of having nodes synchronizing their

retransmissions.

Additionally, some of the previously discussed retransmis-

sion policies require some period of time to gather information

to make a decision. For instance, considering the counting
policy described above, some time has to pass since the

reception of the first copy of a message to offer the opportunity

for a node to count duplicate message retransmissions. Note
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that, if all nodes that are neighbors of a node that transmitted a

message wait for the same time, all of them would retransmit

simultaneously because none would observe a duplicate mes-

sage. Such transmissions would potentially lead to collisions,

compromising their usefulness for achieving high reliability.

This implies that defining such retransmission delays might

require more sophisticated mechanisms, for instance, the re-

transmission delay of a node for a given message received for

the first time might depend on the retransmission context of

that node as described above. As an example, consider again

the counting retransmission policy. It could be useful to apply

a retransmission delay that would be inversely proportional

to the distance of the sender, such that nodes that are farther

away will decide to retransmit earlier, enabling nodes closer

to the sender to avoid their retransmissions, and potentially

covering larger number of nodes that have not observed that

message yet (in fact, this is very similar to the approach taken

by PAMPA [15]).

III. WIRELESS BROADCAST ALGORITHMS FRAMEWORK

In this section, we present our conceptual framework that

captures the operation of a wide range of wireless ad hoc

broadcast protocols. Our framework design derives directly

from the observations presented previously (Section II). Our

key insight for devising this framework is that most protocols

to support wireless ad hoc broadcast present similar architec-

tural patterns, differing primarily on the employed retransmis-
sion policy, their strategies to compute a retransmission delay,

and what is the required (external) retransmission context
that provides environmental information for the retransmission

policy and the computing of the retransmission delay.

Additionally, we note that some approaches (e.g., [16])

rely on multiple rounds of (potential) retransmissions of a

single message, where the protocol reevaluates the need of

retransmitting the message. To accommodate these class of

protocols, we enrich our framework with an additional parame-

ter denominated phases [16] that encodes the number of times,

for each newly received message, that a protocol will evaluate

its decision to retransmit that message. For simplicity, we

assume that the time between these distinct phases is provided

by the same function that computes the retransmission delay

for protocols that only consider, at most, a single message

retransmission.

In the following we present the overview of the workflow of

a generic wireless ad hoc broadcast protocol, that lies at the

core of our framework, explaining our notation to represent

different protocols. We then provide examples of possible

materializations for its components, and finally, present the

specification of a set of representative wireless ad hoc broad-

cast protocols using our framework.

A. Overview

Figure 1 presents a simplified flux diagram that captures the

workflow of a generic wireless ad hoc broadcast protocol. The

diagram describes the workflow for a particular message m.

Message
(locally broadcasted

or received)

New 
Msg?

Compute
Retransmission

Delay

Yes

(phase 1)

Register Duplicate

No

Wait Delay
Retransmission

Context

Query

Execute
Retransmission

Policy

Query

Query phase
<

NP

Yes

(inc phase)

No

End

Fig. 1. Workflow for a Generic Wireless Ad hoc Broadcast Protocol

Evidently, multiple workflows for different messages might be

concurrently active in the context of a single node.

The workflow starts with the reception of a message. We

assume messages have a unique identifier that allows the

protocol to easily detect duplicates. Upon the reception of a

message, the first step of our generic protocol is to check if this

is the first time that the message is observed. If this is not the

case (if the message is a duplicate) and if the protocol is still

processing this message (i.e., if there is an active workflow

for that message) we simply register the reception of the

duplicate (and the source of the transmission). This is relevant

for protocols that take into account the reception of duplicates

in their operation.

However, if the message is received for the first time, this

will trigger the start of the retransmission process (starting

at retransmission phase 1). As the first step of this process,

our generic protocol computes the retransmission delay to be

applied for this message. The retransmission delay computa-

tion is performed by using a function that is provided to our

framework as a parameter. The complexity of such function

can be highly variable (we discuss the design of some of these

functions in Section III-B2), it receives as input the received

message, the identifier of the node from whom the message

was received, and the number of the retransmission phase in

which the protocol is (all messages start in phase 1). Note that

the function that computes the transmission delay may query

the retransmission context, which is also a parameter in our

framework (more details in Section III-B1).

After computing the retransmission delay, the workflow

proceeds by waiting for that amount of time, after which it

executes the retransmission policy function, which is another

parameter provided to our framework. Similar to the retrans-

mission delay, the function that executes our retransmission

policy can be arbitrarily complex. It receives as input the same

information as the retransmission delay function, and similarly,
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it can query the retransmission context to obtain additional

information that can be useful for computing the decision to

retransmit or not the message. Additionally, the retransmission

policy can also query the local information of our broadcast

protocol, that keeps track of all duplicate messages received

(for messages whose workflows are still under execution).

If the retransmission policy decides to retransmit the mes-

sage, it will request the transmission to the local device.

Independently of the decision, the workflow proceeds by

verifying if the protocol has reached the last retransmission

phase, by comparing the current phase of the protocol with the

number of retransmission phases associated with that protocol

(parameter NP). If the generic protocol was configured to

execute additional retransmission phases, the current phase is

incremented, and the protocol goes back to the computation

of the retransmission delay. Otherwise, the workflow for the

current message terminates (and information about duplicates

received for that message can be garbage collected).

B. Framework Parameters

Notice that there are four parameters associated with the

execution of our generic wireless ad hoc protocol described

above. This implies that a wireless ad hoc broadcast protocol

is defined in our framework by specifying the values of these

four parameters. More precisely, in our framework a concrete

wireless ad hoc broadcast protocol can be specified as a tuple:

(RC,RDF,RPF,NP), where RC stands for the Retransmission
Context, RDF represents the Retransmission Delay Function,

RPF denotes the Retransmission Policy Function, and finally,

NP denotes the number of retransmission phases configured

for that protocol.

In the following, we will discuss examples of possible

values for these parameters.

1) Retransmission Context: We now briefly discuss some

of the retransmission contexts that can be employed in the

design of concrete wireless ad hoc broadcast protocols.

a) ⊥: This is the non-existing context and is employed

to denote protocols that do not take into account any environ-

mental external information.

b) POWERAWARE: This is a context that records, for

each received message, the radio signal strength associated

with that transmission. It will further normalize this intensity

to a common reference (that depends on the recent history

of received transmissions). As it will be shown further ahead,

this retransmission context is employed in the design of the

families of protocols PAMPA [15] and Flow-Aware [16].

c) GPS: This is a context that provides to each node its

own set of GPS coordinates. Furthermore, this retransmission

context will also tag any outbound message with the location

of the transmitting node (this effectively allows nodes that

receive a message to compute the distance to the sender).

d) NEIGHBORS(H ): This is a particularly interesting

retransmission context since it does not require specialized

hardware. This context will provide each node information

about their neighbors and their neighbors’ neighbors and so

forth, up to an horizon of H network hops. While this can

be materialized by static configuration files in static settings

(i.e., where nodes are stationary), it can also be materialized

through a simple neighboring protocol where nodes exchange

periodic announcement messages, where they include infor-

mation about their neighbors (up to H − 1 hops).

2) Retransmission Delay Function: We now provide some

examples of possible retransmission delay functions that can

be employed when building concrete wireless ad hoc broadcast

protocols. We remind the reader that these functions have

as (base) input the message m being processed, the sender

s from whom the message was received, and the current

retransmission phase p in which the protocol is for message

m. As it will become obvious, not all retransmission delay

functions use these inputs. We, however, represent them for

completeness of presentation.

a) RANDOM(T ,m,s,p): This is a simple function that

computes a small random delay (up to T ) that aims at minimiz-

ing the probability of two (neighboring) nodes retransmitting

a message received from the same peer simultaneously.

b) DISTANCEBYPOWER(T ,m,s,p): This function as-

sumes a context where the transmission power associated

with a given received message is known. Based on this, this

function computes a retransmission delay of at most T , that is

proportional to the power of the radio signal of the received

message (i.e, weaker radio signals will lead to smaller delays).

c) NEIGHBASED(T ,m,s,p): This function assumes a

context where nodes have information about their neighbors,

in particular the number of neighbors that they have. Based

on this information, this function computes a delay, with a

maximum value of T , that is inversely proportional to the

number of neighbors. This implies that nodes with a higher

number of neighbors will use smaller delays, while nodes with

fewer neighbors will use delays close to T .

3) Retransmission Policy Function: We now present some

examples of possible retransmission policies that can be

employed when building concrete wireless ad hoc broadcast

protocols. We remind the reader that retransmission policies

have the same (base) input values as the functions that compute

the retransmission delays.

a) TRUE(m,s,p): This is a simple policy that always

decides to retransmit a message.

b) PROBABILITY(λ,m,s,p): This is another simple pol-

icy that returns a positive decision with a probability λ,

independently of the other input parameters of the function.

c) COUNT(c,m,s,p): This encodes a counting retrans-

mission policy, where the decision to retransmit a message is

only positive if the number of duplicates received (including

the first reception) for that message is below c.
d) ADDITIONALCOVERAGE(ε,m,s,p): This denotes a

retransmission policy that leverages a retransmission context

that allows nodes to infer their own location and the location

of nodes from whom they originally received m and any

duplicate of m. Based on this information, the node will

compute the amount of area that a retransmission performed

by itself will cover, considering the area already covered by

the nodes that already retransmitted the message. If this area is
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above a given threshold ε it will decide to retransmit message

m, otherwise, the node will decide not to retransmit m.

e) COVEREDNEIGHBORS(k,m,s,p): This denotes a re-

transmission policy that, similar to the previous one, takes into

account the nodes from whom a copy of m was received and

assumes a context that allows nodes to know the neighborhood

of nodes (to an horizon of 2 hops). Based on this information,

it computes the number of new nodes that will receive the

message by its retransmission. If this value is above k, a

retransmission is performed, otherwise, the node refrains form

retransmitting the message.

C. Examples of Protocol Specification

To illustrate the ability of our framework to specify and

capture the particularities of existing wireless ad hoc broadcast

protocols, we now provide their specification resorting to the

examples of retransmission delay functions, retransmission

policy functions, and retransmission contexts discussed pre-

viously. We have selected a representative protocol for each

of the classes discussed in Section II. We note that to improve

readability we only present the parameters that are specific for

each retransmission delay and retransmission policy functions.

Parameters have values that illustrate a concrete (and possible)

materialization of these protocols.

1) Flood-based Broadcast: Flood based broadcast pro-

tocols can be easily described in our framework as: (⊥,

RANDOM(100), TRUE, 1). This implies that the protocol

operates with no need of a retransmission context, applying

a random delay of at most T = 100ms before transmissions,

where the retransmission policy is to always retransmit every

message, with a single retransmission phase (i.e., each mes-

sage is retransmitted by each node exactly one time). This is

the most simple of the broadcast protocols that we consider.

2) Probabilistic Broadcast: Probabilistic broadcast proto-

cols are very similar to flood-based protocols, with the key dif-

ference that nodes only retransmit each message with a given

probability. In this example, we consider a protocol where

the probability of retransmitting a message is λ = 0.8 and a

random delay of T = 100ms. Such a probabilistic protocol

can be described in our framework as: (⊥, RANDOM(100),

PROBABILITY(0.8), 1).

3) Counting Broadcast: Here we consider a simple count-

ing broadcast protocol, that retransmits a message after a ran-

dom amount of time, of at most T = 1000ms, if the number

of duplicates is below c = 2. Such a protocol is specified in

our framework as: (⊥, RANDOM(1000), COUNT(2), 1).

4) Distance-based Broadcast (PAMPA and Flow-Aware):
PAMPA [15] is a solution that delays the retransmission of a

message m considering the strength of the radio signal of the

first reception of m. Hence, the protocol operates with access

to an external source of information that allows obtaining these

(normalized) values for received messages, which we refer as

using the POWERAWARE retransmission context.

In particular, the weaker the signal the smaller the delay

used by a node (in this example we consider a delay of

at most 500ms). When this delay expires, a node will only

retransmit a message m if it has not observed 2 additional

copies of that message transmitted by other nodes. In this

protocol, each node attempts to retransmit a message a single

time. Hence, PAMPA can be described as: (POWERAWARE,

DISTANCEBYPOWER(500), COUNT(2), 1)

Flow-Aware [16] is a variant of PAMPA that introduced

the use of two phases of retransmission. Naturally the

specification of this protocol is very similar to PAMPA,

and a simplification can be captured by: (POWERAWARE,

DISTANCEBYPOWER(500), COUNT(2), 2).

5) Location-based Broadcast: We consider a simple variant

of the algorithm described in [18], whereas nodes are assumed

to have access to a local GPS device that allows them to obtain

their location. We denote this by noting that this protocol oper-

ates using the GPS retransmission context. This context trans-

parently captures messages sent by nodes, and adds control

information indicating the location of the node. The protocol

operates as follows: when a node receives a message m, it

will attempt to retransmit the m after a small random delay (to

minimize collisions). To decide if a retransmission is useful,

the node takes into account the location of all nodes from

whom it received copies of m and computes the amount of area

that a retransmission performed by itself would cover, that was

not yet covered by previously received transmissions of that

message. If this area is above a given threshold (in this case we

assume ε = 25%) the node proceeds with the retransmission,

otherwise, it will consider that the additional coverage offered

by its transmission is not sufficiently large and avoids the

retransmission. Each node attempts to retransmit each message

a single time. In our framework we specify such a protocol as:

(GPS, RANDOM(100), ADDITIONALCOVERAGE(25%), 1).

6) Neighbor-aware Broadcast (LENWB): Finally, we pro-

vide an example of a neighbor-aware broadcast protocol, in

particular, the LENWB protocol described originally in [32].

This protocol continuously transmits hello packets containing

its local perception of its neighbors, which enables every node

to build a knowledge of the network topology with an horizon

of 2 hops. We capture this by stating that this protocol operates

with a retransmission context of NEIGHBORS(2). The protocol

operates as follows: when it receives a message m it will

apply a delay, before attempting to retransmit the message, that

depends on the number of neighbors of that node (nodes with

fewer neighbors will compute higher delays, which we assume

will be at most 500ms). After this delay, the node compares its

neighbors list with the list of all nodes from whom it received

a copy of m. If its transmission will only reach nodes that have

been covered by previous transmissions of m it decides not to

retransmit the message, otherwise it retransmits m. Each node

only attempts to retransmit a message a single time. In our

framework this protocol can be described as: (NEIGHBORS(2),

NEIGHBASED(500), COVEREDNEIGHBORS, 1).

IV. NABA: NEIGHBOR-AWARE BROADCAST

ALGORITHMS

In this section, we leverage the framework previously de-

scribed to study the family of protocols that relies on neigh-
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boring information, that we name Neighbor-Aware Broadcast

Algorithms, or simply, NABA. We consider this class of

protocols to be of particular relevance, due to the fact that

they can be implemented in commodity hardware without

resorting to specialized hardware (such as GPS receivers or

radios that are capable of measuring the strength of the radio

signal associated with received messages).

A. Neighbor-Aware Retransmission Context

Broadcast protocols that leverage information about the

local network topology for their operation can obtain this

information through a companion protocol that periodically

transmits an announcement containing the node’s identifiers. If

the n-hop neighborhood is also required, such announcements

can also carry the information obtained so far for neighbors

up to n− 1 hops.

We notice, however, that not all nodes are important for the

successful retransmission of a broadcast message, an observa-

tion also made by other neighbor-based broadcast algorithms

[19], [30], [33]. Hence, a simple discovery protocol, such as

the one described above, could be enriched to compute the

relationships between nodes regarding message retransmission

coverage. These relationships can be computed by performing

comparisons of neighbor sets between neighboring nodes,

attributing to each neighboring a label: i) Reduntant; ii)
Covered; or iii) Critical. We refer to this enriched context

as LABELNEIGH(H ), being H = 2 in our solution.

These labels are computed between two neighboring nodes

a and b in the following way. The neighbor b of a node a
is said to have a relation of Reduntant if, and only if, the

neighbors of b are the same as the neighbors of a (excluding

a and b). The neighbor b of a node a is said to have a relation

of Covered if, and only if, the neighbors of b are a strict subset

(i.e., all neighbor of b are contained in) of a’s neighbors. The

neighbor b of a node a is said to have a relation of Critical,
if it is neither Redundant nor Covered.

B. Neighbor-Aware Retransmission Policies

Neighbor-based broadcast algorithms whose retransmission

policy is only based on the coverage of neighbors can be

enriched with additional information. The retransmission poli-

cies presented here, all present the dependency of a neighbor

retransmission context. We now present 3 different neighbor-

aware retransmission policies:

a) NEIGHBORCOUNTING(c,m,s,p): This retransmis-

sion policy enriches a counting policy (with parameter c) with

information about the number of neighbors of the local node.

The decision to retransmit the message is only positive when

the number of received duplicates is lower than the minimum

between c and the number of neighbors of the current node.

b) PBNEIGHCOUNTING(c1,c2,m,s,p): This retransmis-

sion policy enriches the first one, with two threshold param-

eters c1 and c2, where c1 < c2. If the number of received

duplicates of m is greater than or equal to the minimum

between the number of neighbors of that node and c2, it

does not retransmit the message. Otherwise, if the number of

Label Specification

Flood (⊥, RANDOM(1000), TRUE, 1)
Counting (⊥, RANDOM(1000),COUNT(2),1)
Gossip (⊥, RANDOM(1000), PROBABILITY(0.8), 1)
LENWB (NEIGHBORS(2), NEIGHBASED(1000), COVEREDNEIGHBORS, 1)
NABA1 (NEIGHBORS(1),NEIGHBASED(1000),NEIGHBORCOUNTING(2),1)
NABA2 (NEIGHBORS(1),NEIGHBASED(1000),PBNEIGHCOUNTING(1,4),1)
NABA3 (LABELNEIGH(2),NEIGHBASED(1000),CRITICALNEIGH(),1)
NABA4 (LABELNEIGH(2),NEIGHBASED(1000),CRITICALNEIGH(),2)

TABLE I
LABEL AND SPECIFICAITON OF TESTED BROADCAST PROTOCOLS

received duplicate messages c is lower than c1, the message

is retransmitted. If the number of received duplicates c is

between c1 and c2, a probability based on c is calculated to

retransmit the message, having higher probabilities for lower

values of c.
c) CRITICALNEIGH(m,s,p): This retransmission policy

leverages the labels computed by the neighbor-aware re-

transmission contexts to perform retransmission decisions. A

message is only retransmitted if the sender s has been labeled

as Critical, or s = ⊥. This policy can also leverage multiple

phases to ensure that Critical nodes are able to propagate

messages, as such, when the phase p is greater than 1, the

policy counts the number of all retransmissions performed by

Critical neighbors, retransmitting the message if at least one

such neighbor has failed to transmit the message.
Based on the policies described above, we derived the

following protocols:

NABA1: (NEIGHBORS(1),NEIGHBASED(1000),NEIGHBORCOUNTING(2),1)
NABA2: (NEIGHBORS(1),NEIGHBASED(1000),PBNEIGHCOUNTING(1,4),1)
NABA3: (LABELNEIGH(2),NEIGHBASED(1000),CRITICALNEIGH(),1)
NABA4: (LABELNEIGH(2),NEIGHBASED(1000),CRITICALNEIGH(),2)

In the following section, we experimentally access the

performance of these variants and compare it with the existing

state of the art.

V. EVALUATION

In this section, we describe our practical assessment of a

variety of broadcast algorithms resorting to our framework.

The framework and all the modules used in our evaluation

were implemented in the C language resorting to Yggdrasil

[7], a framework to develop wireless ad hoc protocols that

encourages protocols to be developed with clean event-driven

interfaces.

We have implemented a small and parameterizable kernel

for wireless ad hoc broadcast protocols, that fundamentally is

an implementation of the generic protocol previously presented

in Section III. We further implemented the retransmission

delay and policy functions described previously that do not

require specialized hardware. We implemented the neighbor-

aware contexts as companion protocols, that execute alongside

the broadcast protocol and expose an interface to allow other

protocols to obtain context information from it.

In the following, we describe our experimental methodology

and discuss our experimental results.

A. Experimental Methodology

We have conducted experiments with the protocols de-

scribed in Table I. Notice that we describe the protocols that
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Fig. 2. Node distribution in each scenario

we used in our experiences using the notation of the framework

described previously. All time references are in milliseconds.

The companion protocols that gather information about the

local topology was configured to issue messages every six

seconds, to minimize the contention in the wireless medium

due to this protocol.

We have conducted our experiments using a practical

testbed, composed of 21 Raspberry Pi 3 - model B, in two

different scenarios. One where the nodes are dispersed through

our department building, along two hallways, with approxi-

mately 30 meters, and several rooms (illustrated schematically

in Figure 2a). Due to the unpredictability of the computed

neighborhood in each experiment in the first scenario, we also

conducted experiments in a second scenario, where all nodes

were collocated in a single room, and we have artificially

restricted neighborhood relationships, effectively producing a

logical overlay network (the logical network is illustrated in

Figure 2b) [34]. We note that this last scenario is highly

challenging for broadcast protocols because, although devices

are filtering messages from nodes with whom they lack a

logical relation, their messages still collide, which results in

significant contention in the wireless medium.

All reported experiments had a duration of 10 minutes (600
seconds) with grace periods in the beginning (60 seconds in

the disperse scenario and 5 seconds in the local scenario) and

the end (60 seconds in both scenarios). This allowed our exper-

imental deployment to stabilize. Each experiment is executed

3 times and the results show the average of all (independent)

runs. In the following we present the experimental results in

both scenarios.

B. Experimental Results

Our experimental evaluation was focused on the relevant

performance metrics of wireless ad hoc broadcast protocols

previously discussed: reliability (average fraction of correct

processes that delivered a broadcast message), and cost (the

average number of transmissions performed to disseminate a
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Fig. 3. Broadcast Algorithms in Disperse Scenario

message). A reliability of 100% implies that all messages were

delivered to all correct processes in the system. Notice that the

cost is relative to the total number of processes in the system.

Solutions where each node performs a single transmission per

message results in a cost of 21 (as our experimental setup is

composed of 21 nodes).

1) Stable Scenario: In this set of experiments, we have

configured each node to perform a broadcast every 2 seconds

with a probability of 50%. Our goal was to study the perfor-

mance of different alternatives in executions where nodes do

not fail (still collisions may happen in the wireless medium). In

each experiment, approximately a total of 3150 messages were

broadcast. Plots encode simultaneously the average reliability

(left y-axis, purple bars) and cost (right y-axis, green bars) for

each broadcast protocol.

a) Disperse Scenario: Figure 3 shows the results we

have obtained in this setting where nodes are scattered across

the hallways of our department. Flooding shows expected

results, it achieves perfect reliability at the cost of having

each node retransmitting each message once. We note that the

success of this protocol is in part due to the high random delay

of 1000ms which significantly minimizes the risk of collisions

in the wireless medium. However, such a solution could not

be sustained if the transmission rate of nodes was higher. The

gossip solution achieves slightly lower reliability, however, the

cost is lower due to its probabilistic nature (the cost is reduced

by approximately 20% as expected). The counting solution

has reliability slightly above 90%. The reason for this is the

c parameter set to 2. This confirms our previous observation,

that the lack of information about the local network topology

leads some nodes, that are bridging different partitions of the

network, to not retransmit messages. However, it exhibits the

lowest cost among all tested protocols.

Concerning the neighbor-aware broadcast solutions, we note

that the one with best overall performance is NABA2, having

reliability of 100% at the lowest cost. This is an interesting

result, as this protocol relies on a very simple retransmission

context (it only requires each node to keep track of its direct

neighbors) and it combines this solution with a retransmission

policy that always retransmits messages when no duplicate

messages are received, except when nodes have fewer or equal

neighboring nodes to parameter c1 (in this case c1 = 1),
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Fig. 4. Broadcast Algorithms in Local Scenario

avoiding redundant retransmissions. When more duplicates are

received this protocol decides to retransmit with a probability

that lowers with the number of duplicates (becoming zero

after the reception of 4 duplicates). The only other protocol

to achieve a reliability of 100% is NABA4, that attempts

to identify critical nodes to retransmit messages and, for

those, it can attempt to retransmit messages twice. However,

this second retransmission leads to the cost of this solution

becoming too high, even above that of flooding. LENWB

and NABA1 also performed well, having reliability close

to 100% with low cost. NABA3 showed similar reliability

but at a higher cost. An interesting aspect here is that the

policies COVEREDNEIGHBORS and NEIGHBORCOUTING(2)

appear to be effectively equivalent. This happens because our

experiments were conducted in a static topology, where nodes

have no mobility. At a high level, both policies strive to

ensure coverage of all neighbors. However, it is expected that

NEIGHBORCOUTING (2) should present superior results in

dynamic topologies.

b) Local Scenario: Figure 4 reports our results for the

local scenario, which employs the logical network to restrict

the origins of messages that nodes can receive and process,

effectively lowering the natural redundancy promoted by the

use of one-hop broadcast. Notice that contention in the wire-

less medium is higher in this scenario. The results show that

NABA3 and NABA4, which resort to the LABELNEIGH(2)

context, achieve the best performance overall, with high re-

liability and lower cost. In this context, the second phase of

retransmission in NABA4 becomes useful, making this the

only protocol to achieve 100% reliability. The other protocols

are significantly affected by the lack of redundancy in the

wireless network. The key take away from these results is

twofold: i) identifying nodes that are in strategic positions in

the network is essential for achieving adequate performance

in sparse networks; and ii) multiple retransmission phases are

adequate only for this type of network.

2) Faulty Scenarios: To effectively evaluate the effects

of faults in the evaluated protocols, we have performed ex-

periments in our local scenario, where we introduced three

simultaneous node crashes (on nodes 9, 10, and 18, see

Figure 2b). These node crashes make the network more sparse

further reducing redundant communication paths. In these
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experiments, all nodes transmit every 20 seconds and failures

occur around the 370s mark. Figure 5 report the reliability

over time with faults being marked by the vertical line).

All protocols are able to sustain their reliability to values

that are consistent with those reported in Figure 4, with the

exception of NABA1 whose reliability increases to become

on par with most of the solutions (notice that only NABA4 is

able to achieve a reliability of 100% with a small drop after

failures). The results obtained for NABA1 are explainable by

the fact that failures reduce redundancy, leading nodes to be

unable to receive two redundant messages before executing the

retransmission policy (which incidentally is executed at a later

time for some nodes), hence the protocol operation becomes

similar to flood.

VI. RELATED WORK

Having already discussed several wireless ad hoc broadcast

protocols, here we focus on frameworks for defining them.

The authors of [35] present a generic conceptual framework

for designing peer sampling services based on gossip protocols

in wired environments. Gossip protocols have been the basis

for many dissemination abstractions [36] in wired networks

and many wireless ad hoc broadcast protocols follow their

design. However, this framework does not discuss a generic

broadcast protocol as our does.

Frameworks for broadcast protocols in wireless networks

have also been explored in [30] and [31] however, these only

consider neighbor-aware broadcast protocols that rely on the

computation of connected dominating sets, to define which

nodes should retransmit messages. Our framework is more

general and able to model other classes of protocols.

VII. CONCLUSION

In this paper, we have presented a conceptual framework to

specify and easily define wireless ad hoc broadcast protocols.

This framework is based on a generic broadcast protocol,

whose behavior is parameterized across three different di-

mensions: retransmission delay, retransmission policy, and

retransmission context. We employed our framework to study
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a particularly interesting class of protocols, those that are

neighbor-aware (NABAs). We have implemented a prototype

of a kernel to support the construction and execution of

wireless ad hoc broadcast protocols based on the proposed

framework and conducted an experimental work comparing,

in practice and using commodity hardware, different broadcast

protocols. Our results show that neighbor-aware protocols

exhibit interesting results and should be further pursued to

enable novel edge applications for wireless ad hoc networks

to emerge.
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