S o9 VWAID S’NWO
X

Nuno Miguel Cadima Vasconcelos Morais

Bachelor in Computer Science and Engineering

N
9

DeMMon:
Decentralized Edge Management and Monitoring

Dissertation plan submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Joao Leitao, Assistant Professor,
NOVA University of Lisbon

FACULDADE DE
CIENCIAS E TECNOLOGIA
UNIVERSIDADE NOVA DE LISBOA

Fevereiro, 2020

The work reported in this document was partially supported by
Fundagéo para a Ciéncia e Tecnologia through the Project NG-STORAGE (PTDC/CCI-INF/32038/2017)

Joao Leitao
The work reported in this document was partially supported by
Fundação para a Ciência e Tecnologia through the Project NG-STORAGE (PTDC/CCI-INF/32038/2017)

ABSTRACT

The centralized model proposed by the Cloud computing paradigm mismatches the
decentralized nature of mobile and IoT applications, given the fact that most of data
production and consumption is performed by devices outside of the data center. Serving
data from and performing most of computations on cloud data centers increases the
infrastructure costs for service providers and the latency for end users, while also raising
security and privacy concerns.

The aforementioned limitations have led us into a post-cloud era where a new com-
puting paradigm arose: Edge Computing. Edge Computing takes into account the broad
spectrum of devices residing outside of the data center as potential targets for computa-
tions. However, as edge devices tend to have heterogenous capacity and computational
power, there is the need for them to effectively share resources and coordinate to accom-
plish tasks which would otherwise be impossible for a single edge device.

The study of the state of the art has revealed that existing resource tracking and shar-
ing solutions are commonly tailored for homogenous devices deployed on a single stable
environment, which are inadequate for dynamic edge environments. In this work, we
propose to address these limitations by presenting a novel solution for resource tracking
and sharing in edge settings. This solution aims to federate large numbers of devices
and continuously collect and aggregate information regarding their operation, as well
as the execution of deployed applicational components in a decentralized manner. This
will allow edge-enabled applications, decomposed in components, to adapt to runtime
environmental changes by either offloading tasks, replicating or migrating the aforemen-

tioned components.

Keywords:
Edge Computing, Resource Management, Resource Monitoring, Resource Location,

Topology Management

iii

REsumMmo

O modelo de computacao centralizado proposto pelo paradigma da Computacao na
Nuvem diverge do modelo das aplicagdes para a Internet das Coisas e para aplicagoes
moveis, dado que a maioria da producao e requisicao de dados é feita por dispositivos que
se encontram distantes dos centros de dados. Armazenar dados e executar computagoes
predominantemente em centros de dados incorre em custos de infrastrutura adicionais,
aumenta a laténcia para os utilizadores e para fornecedores de servigos, como também
levanta questdes sobre a privacidade e seguranca dos dados.

Para mitigar as limitagoes previamente mencionadas, surgiu um novo paradigma:
Computagao na Periferia. Este paradigma propde executar computagoes, e potencial-
mente armazenar dados, em dispositivos fora dos centros de dados. No entanto, a medida
que nos distanciamos dos centros de dados, a capacidade de computagao e armazena-
mento dos dispositivos tende a ser limitada. Visto isto, surge a necessidade de partilhar
recursos entre dispositivos na periferia, de modo a executar computagoes sofisticadas que
outrora seriam impossiveis com um unico dispositivo destes.

O estudo do estado da arte revelou que as solucdes existentes para a gestao e locali-
zagao de recursos sao normalmente especializadas para ambientes na Nuvem, onde os
dispositivos tém capacidade de computagao e armazenamento semelhantes, algo que nao
¢ adequado para ambientes dinamicos e heterogéneos como a periferia do sistema. Nesta
dissertacao, propde-se a criacao de uma solucao para a gestao e monitorizagao de recur-
sos na periferia. Esta solucao nao s6 pretende gerir grandes quantidades de dispositivos,
como também recolher e agregar métricas sobre a operagao e execugao de componentes
aplicacionais, de forma descentralizada. Estas métricas, por sua vez, auxiliam a tomada
de decisao relativa a migragao, replicagao ou delegacao (de porgoes) dos componentes

aplicacionais, permitindo assim a adaptagao autonémica do sistema.

Palavras-chave:
Computagao na periferia, Gestao de recursos, Monitorizagao, Localiza¢ao de recursos,

Gestao de topologias de redes

vi

CONTENTS

1 Introduction

1.1
1.2
1.3
1.4

Motivation o o e e e e e e e e e e
Context e e e e e e e e e
Expected Contributions o 0 oL

Document structure e e e

2 Related Work

2.1

2.2

2.3

2.4

2.5

Edge Environment o
2.1.1 EdgeComputing
2.1.2 Edge Environment Taxonomy
2.1.3 Discussiono
Execution Environments 0 L
2.2.1 Virtual Machines
222 Containersot
223 Discussion
Topology Management
2.3.1 Taxonomy of Overlay Networks
2.3.2 Overlay Network Metrics
2.3.3 Examples of Overlay Networks
2.3.4 Discussion
Resource Location and Discovery
2.4.1 Querying techniques
2.4.2 Centralized Resource Location
2.4.3 Resource Location on Unstructured Overlays
2.4.4 Resource Location on Distributed Hash Tables
245 DiscuSsion
Resource Monitoring L e
2.5.1 Device Monitoring,
2.5.2 Container Monitoring 0 0oL,
2.5.3 Aggregation
2.5.4 Aggregation techniques
2.5.5 Monitoring systems oo oL

vii

LW LW N =

O O 00 N O O U

10
11
13
13
17
17
18
18
18
19
20
20
21
21
22
23
23

CONTENTS

25,6 Discussion e
2.6 Resource Management
2.6.1 Resource Management Taxonomy
2.6.2 Resource Sharing Systems,
2.6.3 Discussion
2.7 SUMMATY o o vt e

3 Planning

3.1 SystemModel
3.2 Proposed Solution

3.3 Evaluation
3.4 Scheduling

Bibliography

viii

25
26
26
27
30
30

31
31
32
33
34

37

CHAPTER

INTRODUCTION

1.1 Motivation

Nowadays, the Cloud Computing paradigm is the standard for development, deployment
and management of services, and most of the software systems present in our everyday
life, such as Google Apps, Amazon, Twitter, among many others, is deployed on some
form of cloud service. Cloud Computing refers to both the applications delivered as
services over the Internet and the hardware and software systems in the data centers that
provide those services [1]. It provides the illusion of unlimited computing power, which

revolutionized the way developers, companies, and users rationalize about applications.

However, the centralized model proposed by the Cloud Computing paradigm mis-
matches the needs of many types of applications such as: latency-sensitive applications,
interactive mobile applications, and IoT applications [39]. All of these application do-
mains are characterized by having data being generated and accessed (mostly) by end-user
devices, consequently, when the computation resides in the data center (DC), far from the
source of the data, challenges may arise: from the physical space needed to contain all the
infrastructure, the increasing amount of bandwidth needed to support the information
exchange from the DC to the client, the latency in communication from the clients to the
DC as well as the security aspects that emerge from offloading data storage and computa-
tion to DCs operated by third parties have directed us into a new computing paradigm:

Edge Computing.

Edge computing addresses the increasing need for enriching the interaction between
cloud computing systems and interactive / collaborative web and mobile applications
[21], by taking into consideration computing and networking resources which exist be-

yond the boundaries of DCs and close to the edge of systems [37] [54]. This paradigm aims

1

CHAPTER 1. INTRODUCTION

at enabling the creation of systems which could otherwise be unfeasible with Cloud Com-
puting: Google’s self-driving car generates 1 Gigabyte every second [53], and a Boeing 787
produces data at a rate close to 5 gigabytes per second [18], which would be impossible
to transport and process in real-time (e.g., towards self-driving) if the computations were
to be carried exclusively in a DC.

By taking into consideration all the devices which are external to the DC, we are faced
with a huge increase in the number and characteristics of computational devices ranging
from Edge Data Centers to 5G towers and mobile devices. These devices, contrary to the
cloud, have heterogenous computational capacity and potentially limited and unreliable
data lines. Given this, developing an efficient resource management and sharing platform
which enables the adequate and efficient use of these devices is an open challenge for

fully realizing Edge Computing.

1.2 Context

Resource management and sharing platforms are extensibly used in Cloud systems (e.g.
Mesos [24], Yarn [60], Omega [52], among others), whose high-level functionality consist
of: (1) federating all the devices and tracking their state and utilization of computational
and networking resources; (2) keeping track of resource demands which arise from dif-
ferent tenants; (3) performing resource allocations to satisfy the needs of such tenants;
(4) adapting to dynamic workloads such that the system remains balanced and system
policies as well as performance criteria are being met.

Most popular resource management and sharing platforms are tailored towards small
numbers of homogenous resource-heavy devices, which rely on a centralized system com-
ponent that performs resource allocations with global knowledge of the system. Although
this system architecture heavily simplifies the management of the resources, we argue
that such systems are plagued by a central point of failure and a single point of contention
which hinders the scalability of such such solutions, making them unsuitable for the scale
of Edge Computing systems. Instead, we argue in favor of decentralized architectures for
such resource management and sharing platforms, composed of multiple components,
potentially organized in a flexible hierarchical way, and promoting load management
decisions supported by partial and localized knowledge of the system.

Given this, it is paramount that devices cooperatively materialize a robust lightweight
decentralized resource control system, which tracks resource demands and allocations.
In such a system, the accuracy and freshness of the information each component has
dictates how efficiently they manage resources such that the system remains balanced,
and applications running on the infrastructure maintain their target quality of service.
This system must federate devices such that they leverage on heterogeneity to build
a hierarchical infrastructure which combines naturally with the device taxonomy, and

adapts to the environment changes.

1.3. EXPECTED CONTRIBUTIONS

1.3 Expected Contributions

The expected contributions from the work to be conducted in this thesis, as will be further
detailed in Chapter 3, arise from the aforementioned challenges. We plan to focus on
creating a decentralized resource monitoring and management solution tailored for pro-
visioning resources for edge-enabled applications. Given this, the expected contributions

to arise from our work consist of:

* A novel decentralized overlay network protocol tailored towards federating large

numbers of edge devices in a hierarchical way.

* A lightweight monitoring solution which relies on that overlay structure to ag-
gregate information regarding applications” operation and the load across edge

resources.

* A decentralized resource management solution capable of satisfying resource al-
locations for multi-tenant resource sharing, based on the monitoring information

captured by our platform

* An extensive experimental assessment of our solution that will demonstrate its
correctness and compare its performance with regard to existing solutions in a
realistic test bed. Parts of this experimental work will be based on simple mock ups

of applications that will be implemented to exercise our platform.

1.4 Document structure

This remaining of this document is structured as follows:

Chapter 2 studies related work that is related with the overall goal of this thesis
work: we begin by analyzing similar paradigms to Edge Computing, the devices which
compose these environments, and execution environments for edge-enabled applications.
Following, we discuss strategies towards federating various devices in an abstraction
layer, and study search strategies to find resources in the this layer, finally, we cover
monitoring and management of system resources.

Chapter 3 further elaborates on the proposed contributions and the proposed work
plan for the remainder of the thesis, including a more detailed explanation of our plans

to experimentally evaluate our solution.

CHAPTER

RELATED WORK

The goal of this chapter is to present the related work studied that is associated with our
objectives. We begin by identifying the four high-level requirements of a resource sharing

platform, as denoted in figure 2.1:

1. Topology Management consists in the study of how to organize multiple devices in a
logical network such that they can cooperatively solve tasks. Efficiently managing
the topology is an essential building block for achieving efficient operation of the

remaining components.

2. Resource Location and Discovery focuses on how to efficiently index and locate re-
sources in the aforementioned logical network. For example, in the context of
resource sharing, resource discovery is paramount towards locating nearby devices
which have enough (free) computing and networking capabilities to perform a cer-

tain task, or host a certain application component or service.

3. Resource Monitoring studies which metrics to track per device, and how to efficiently
compress those metrics through aggregation to reduce the size of the collected
data, as well as how to propagate that data towards the components that need it to

operate.

4. Resource Management addresses how to efficiently manage system resources and
schedule jobs across existing resources such that: (1) the system remains load-
balanced; (2) operations can operate efficiently; (3) jobs have data locality; and (4)
resources are not wasted. While the work conducted in this thesis is tailored toward
supporting this goal, this thesis does not aim at devising a complete scheduling
solution, as that is a complete research line on its own. However, for completeness,

we also discuss this aspect here.

CHAPTER 2. RELATED WORK

Edge Resource Sharing Platform

‘ Resource Management ‘

‘ Resource Location & Discovery ‘ ‘ Resource Monitoring ‘

’ Topology Management ‘

Figure 2.1: High-level architecture for a resource sharing platform

Considering the identified high-level components of such a system, in the following
sections we cover the taxonomy of devices which compose the edge environment, and
discuss how they can be employed towards the design of the proposed solution (Section
2.1). Next, we study execution environments for applications, namely virtual machines
and containers, discuss their performance impact as well as their strengths and limitations
towards supporting edge-enabled applications (Section 2.2).

Following, we study how to federate devices in an efficient abstraction layer that
establishes an efficient topology (Section 2.3), and address how peers can efficiently index
and search for the resources they need (e.g. services, peers, computing power, among
others) in the aforementioned abstraction layer, which in turn enables the delegation of
particular application components (Section 2.4). This is important given the fact that edge
devices are typically resource constrained, and a computing task which would otherwise
require a single cloud device, may require multiple edge devices to be accomplished in
an efficient way.

Next, we cover tools to collect metrics from the aforementioned execution environ-
ments that are relevant towards performing efficient resource allocations. We analyze
how to aggregate those metrics in a decentralized manner, and discuss relevant resource
monitoring systems in the literature, for each, we address its limitations and advantages
for the edge environment (Section 2.5). Lastly, we cover the taxonomy of resource man-
agement solutions, and present popular systems in the literature that share aspects with

the solution we aim at developing (Section 2.6).

2.1 Edge Environment

In this section we provide context about edge-related paradigms, study the taxonomy of
the devices which materialize edge environments, and analyze which computations each

device can perform.

2.1.1 Edge Computing

As previously mentioned, edge computing calls for the processing of data (and potentially
storage) across all the devices which act as an "edge" along the path from the data center
(DC) do the data source or client device [37]. It has the potential of enabling novel edge-
enabled applications along with optimizing existing systems [54], making them more

6

2.1. EDGE ENVIRONMENT

responsive.

Many approaches have already leveraged on some form of Edge computing in the past.
Cloudlets [61] are an extension of the cloud computing paradigm beyond the DC, and
consist in deploying resource rich computers near the vicinity of users that provide cloud
functionality. They have become a trending subject and have been employed towards re-
source management, Big Data analytics, security, among others. A limitation of Cloudlets
is that because they are specialized computers, they cannot guarantee low-latency ubiqg-
uitous service provision, and cannot ensure that applications behave correctly in the
presence of large hotspots of users.

Content Distribution networks [46] are specialized high bandwidth servers strategi-
cally located at the edge of the network which replicate content from a certain origin and
serve it at reduced latencies, effectively decentralizing the content delivery.

Fog Computing [3] is paradigm which aims at solving similar problems to the Edge
Computing. It proposes to provide computing, storage and networking services between
end devices and traditional cloud DCs, typically, but not exclusively located at the edge
of the network. We consider Fog Computing to be interchangeable with our definition
of Edge Computing, however, with a special emphasis on providing infrastructure for
edge-enabled services, instead of focusing on the inter-cooperation among devices.

Osmotic Computing [63] envisions the automatic deployment and management of
inter-connected microservices deployed over a seamless infrastructure composed of both
edge and cloud devices. This is accomplished by employing an orchestration technique
similar to the process of "osmosis". Translated, this consists in dynamically detecting and
resolving resource contention via the execution of coordinated microservice deployments
/ migrations across edge and cloud devices. This paradigm is a subset of Edge Computing,
as it only focuses on deploying microservices on edge devices instead of employing them
towards generic computations, in addition, the original authors only envision deploying
services over cloud and edge DCs, instead of the whole range of possible devices.

Multi-access edge computing [42] (MEC) is a network architecture which proposes
to provide fast-interactive responses for mobile applications. It solves this by employing
the devices in the edge (e.g. base stations and access points) to provide compute resources
for latency-critical mobile applications (e.g. facial recognition). Similar to Osmotic Com-
puting, we consider MEC a subset of edge computing, given that its primary focus is on

how to offload the computation from mobile to the cloud and not vice-versa.

2.1.2 Edge Environment Taxonomy

According to Leitao et al. [37], edge devices may be classified according to three main
attributes: capacity refers to computational, storage and connectivity capabilities of the
device, availability consists in the probability of a device being reachable, and finally,
domain characterizes the way in which a device may be employed towards applications,

either by performing actions on behalf of users (user domain) or performing actions on

7

CHAPTER 2. RELATED WORK

behalf of applications (applicational domain). Given that the concern of our work is
towards building the underlying infrastructure for these applications, we will only focus

on capacity and availability when classifying the taxonomy of the environment.

Table 2.1: Taxonomy of the edge environment

Level | Category Availability | Capacity || Level | Category Availability | Capacity
Lo Cloud Data Centers High High L4 Priv. Servers & Desktops | Medium Medium
L1 ISP, Edge & Private DCs | High High L5 Laptops Low Medium
L2 5G Towers High Medium || L6 Mobile devices Low Low
L3 Networking devices High Low L7 Actuators & Sensors Varied Low

Table 2.1 shows the proposed categories of edge devices, we assign levels to categories
as a function of their distance from the cloud infrastructure.

Levels 0 and 1, composed of cloud and edge DCs, offer pools of computational and stor-
age resources which can dynamically scale. Both of these options have high availability
and large amounts of storage and computational power, as such, there is no limitations
on the kinds of computations these devices can perform.

Levels 2 and 3 are composed of networking devices, namely 5G cell towers, routers,
switches, and access points. Devices in both levels have high availability, and can easily
improve the management of the network, for example, by manipulating data flows among
different components of applications (executing in different devices).

Levels 4 and 5 consist of private servers, desktops and laptops, devices in these lev-
els level have medium capacity and medium to low availability. They can perform a
varied amount of tasks on behalf of devices in higher levels (e.g. compute on behalf of
smartphones, act as logical gateways or just cache data).

Levels 6 consists of tablets and mobile devices, which have low capacity, availability,
and short battery life. Given this, they are limited in how they can perform contribute
towards edge applications. Aside from caching user data, they may filter or aggregate of
data generated from devices in level 7. Finally, level 7 consists of actuators, sensors and
things, these devices are the most limited in their capacity, and enable limited forms of

computation in the form of aggregation and filtering.

2.1.3 Discussion

Coincidently, the levels are correlated to the number of devices and their computational
power, where higher levels tend to have more devices that are closer to the origin of the
data and have lower computational power. Consequently, the higher the level, the harder
it is to employ edge devices to support the execution of edge-enabled applications.
Devices in levels 0-5 are potential candidates towards building the resource man-
agement and monitoring system we intend to create. The low availability and potential
mobility of devices in higher levels make them unsuitable, as they could potentially be a
source of instability in the system. This effect can be circumvented by employing devices
in other levels as gateways for those devices, hence starting to establish a hierarchy on

the way different application components interact.

8

2.2. EXECUTION ENVIRONMENTS

2.2 Execution Environments

After studying the taxonomy of the edge environment, it is paramount to study how these
devices can execute computations (e.g. hosting application components, monitoring tasks,
among others) in a controlled environment. A major requirement of these environments
is the ability to simultaneously execute multiple computations, and that these interfere
as little as possible with each other, as well as with the core behavior of the system.

A popular approach towards solving these challenges is to perform computations in
loosely coupled independent components running some form of virtualization software,
as it enables the co-deployment of components within the same physical machine. The
main benefits of employing virtualization include hardware independence, isolation,
secure user environments, and increased scalability.

The two most common types of virtualization used nowadays are containers and
virtual machines (VMs), in this section present a brief description of both technologies,

and study their advantages / limitations towards supporting edge-enabled applications.

2.2.1 Virtual Machines

A VM provides a complete environment in which an operating system and many pro-
cesses, possibly belonging to multiple users, can coexist. By using VMs, a single-host
hardware platform can support multiple, isolated guest operating system environments
simultaneously [55].

Virtual machines rely on a type of software called a hypervisor, the role of the hypervi-
sor is to abstract hardware to support the concurrent execution of full-fledged operating
systems (e.g. Linux or Windows). Virtualizing the hardware layer ensures great isolation
between virtual machines, meaning that a VM cannot directly interact with the host or
the other VMs, which is highly desirable for both the virtualized applications and the
host.

However, virtualizing the hardware and the device drivers incurs non-negligible over-
head, and the large image sizes of operating systems required by virtual machines makes
live migrations harder to accomplish, which we believe to be crucial in edge environ-

ments.

2.2.2 Containers

Containers (e.g., Docker [17], Linux Containers [27], among others) can be considered
as a lightweight alternative to hypervisor-based virtualization. When using containers,
applications share an OS (and maybe binaries and libraries), and implement isolation of
processes at the operating system level. As a result, these deployments are significantly
smaller in size than hypervisor deployments, for comparison, a physical machine may

store hundreds of containers versus a few tens of VMs [2].

9

CHAPTER 2. RELATED WORK

In terms of performance, container-based virtualization can be compared to an OS
running on bare-metal in terms of memory, CPU, and disk usage [47], and contrary to
VMS, restarting a container doesn’t require rebooting the OS [2], meaning that a small-
sized computation task may be accomplished much faster.

Consequently, given their lightweight nature, it is possible to deploy container-based
applications (e.g. microservices), which can perform fast migration across nodes in the
edge environment (e.g. in order to improve quality of service (QoS) of applications). This
flexibility towards the migration process is an effective tool to deal with many challenges

such as load balancing, scaling, resource reallocation and fault-tolerance.

2.2.3 Discussion

Although VMs are widely present in the cloud infrastructure, they incur significant start
up time (due to having to start-up an entire OS) and image sizes are larger when compared
to containers (due to requiring a full OS image), which hinders the ability to perform
quick migrations across different devices. The accumulation of these factors make VMs
unsuited for devices with low capacity and availability, which are abundant in edge envi-
ronments, consequently, we believe containers are the most appropriate solution when it

comes to performing resource sharing in edge scenarios.

2.3 Topology Management

A major challenge towards decentralized resource monitoring and control, is to federate
all devices (that we also refer to as peers following the peer-to-peer (P2P) literature) in
an abstraction layer (an overlay network) that allows intercommunication and efficient
resource discovery. This section provides context regarding the taxonomy of overlay
networks, followed by a discussion of popular overlay network protocols.

In a P2P system, peers contribute to the system with a portion of their resources, so
that the overall system can accomplish tasks which would otherwise be impossible for
a single peer to solve. Typically, this is achieved in a decentralized way, which means
peers must establish neighboring connections among themselves to enable information
exchange which, in turn, enables to progress towards the system goals.

Participants in a P2P system may know all other peers in the system, which is typically
referred to as full membership knowledge, this is a popular approach in Cloud systems.
However, as the system scales to larger numbers of peers, concurrently entering and
leaving the system (a phenomenon called churn [57]), this information becomes costly to
maintain up-to-date.

In order to circumvent the aforementioned problems, a common alternative is to have
peers only maintain a view of a subset of all peers in the system, which is called partial
membership. This information is maintained by some membership algorithm which

restricts neighboring relations among peers. Partial membership solutions are attractive

10

2.3. TOPOLOGY MANAGEMENT

Unstructured Overlays

/""\\ Unidirectional Bidirectional
O Peer 1 :- Group of peers \ neighboring \ neighboring
@ relation relation

Figure 2.2: Examples Overlay Networks

because they offer similar functionality to full membership systems, while achieving more
scalability and resiliency to churn. The closure of these neighboring relations is what

materializes an overlay network.

2.3.1 Taxonomy of Overlay Networks

Overlay networks are logical networks which operate at the applicational level, these rely
on an existing network (commonly referred to as the underlay) to establish neighboring
relations, where each participant tipically only communicates directly with its overlay
neighbors [59]. Overlays are commonly designed towards specific applicational needs, as
such, their neighboring relations may or may not follow some sort of logic. As observable

in Figure 2.2, there are two main categories of overlays: structured and unstructured:

Unstructured Overlays

Unstructured overlays usually impose little to no rules in neighboring relations, peers
may pick random peers to be their neighbors, or alternatively employ strategies to rank
neighbors and selectively pick the best given a particular criteria, that is typically en-
twined with the needs of applications. A key factor of unstructured overlays is their low
maintenance cost, given that nodes can easily create neighboring relations, which eases
the process of replacing failed ones, consequently, this is the type of overlay which offers
better resilience to churn.

In figure 2.2 we ilustrate three examples of unstructured overlay networks: (A) is
a representation of an overlay network where the connections are unidirectional (e.g.
Cyclon [29]), in this type of overlay peers have no control over the status of incoming con-

nections, consequently, a peer may become isolated from the network without realizing

11

CHAPTER 2. RELATED WORK

it, which is undesirable.

Overlay (B) is similar to (A), however, neighboring connections are bidirectional. This
means that a peer with a given number of outgoing connections must also have the cor-
respondent number of incoming connections, diminishing the risk of the peer becoming
disconnected from the overlay (this is the approach taken by HyParView [33] to achieve
high reliability and fault-tolerance).

Lastly, (C) is a representation of an unstructured overlay where peers establish groups
among themselves (such as Overnesia [38]). Grouping multiple devices into a group can
be useful because: (1) failures can be quickly identified and resolved by other members of
the group; (2) nodes can replicate data within the group, leading to increased availability
of that data; (3) for devices with low computing capabilities, groups are useful because

nodes have nearby neighbors which can simplify the offload of computational tasks.

Structured Overlays

Structured overlays enforce stronger rules towards neighbor selection (generally based
on identifiers of peers). As a result, the overlay generally converges to a a certain topology

known a priori (e.g., a ring, tree, hypercube, among others).

In Figure 2.2 illustrate three kinds of structured overlay networks: (D) corresponds
to a tree, trees are widely used to perform broadcasts (e.g., PlumTree [34]) because of the
smaller message complexity required to deliver a message to all nodes, or to monitor the
system state (if nodes in lower levels of the tree periodically send monitoring information
to upper levels in the tree, in turn, the root of the node has a global view of the collected
monitoring information (e.g., Astrolabe [49])). However, trees are very fragile in the

presence of faults [34].

Overlay depicted in (E) corresponds to the overlay topology tipically expected to sup-
port Distributed Hash Tables. These overlays are extremely popular due to their effective
applicational-level routing capabilities. In a DHT, peers employ a global coordination
mechanism which restricts their neighboring relations such that can find any peer respon-

sible for any given key in a small limited number of steps.

In the example that we show in (E), the topology consists of a ring (which is the
strategy employed by Chord [56]), however, not all distributed hash tables rely on rings
to perform effective routing. For example, in Kademlia [44], nodes organized as leaves

across a binary tree.

Finally, the overlay denoted in (C) is similar to overlay (E), however, each position
of the DHT consists of a virtual node composed by multiple physical nodes (which is
the strategy employed by Rollerchain [45]). Because of this, routing procedures have the
potential to be load-balanced, and churn effects are mitigated, because the failure of a

physical node does necessarily mean the failure of a virtual node.

12

2.3. TOPOLOGY MANAGEMENT

2.3.2 Overlay Network Metrics

If we look at an overlay network where connections between nodes represent edges and
nodes represent vertices in a graph, we obtain a graph from which we may extract direct

metrics to estimate overlay performance [59]:

1. Connectivity. This property is usually measured as a percentage, corresponding to
the largest portion of the system that is connected, intuitively, a connected graph is

one where there is at least one path from each node to all other nodes in the system.

2. Degree Distribution. The degree of a node consists in the number of arcs that are
connected to it. In a directed graph, there is a distinction between in-degree and
out-degree of a node, nodes with a high in-degree value have higher reachability,
while nodes with 0 in-degree cannot be reached. The out-degree of a node represents

a measure of the contribution of that node towards the maintenance of the overlay

topology.

3. Average Shortest Path. A path is composed by the edges of the graph that a message
would have to cross to get from one node to other. The average shortest path consists
in the average of all shorter paths between every pair of peers, to promote efficient

communication patterns, is desirable that this value is as low as possible.

4. Clustering Coefficient. The clustering coefficient provides a measure of the density
of neighboring relations across the neighbors of links between a given node. It
consists in the number of a node’s neighbors divided by the maximum number of
links that could exist between those neighbors. A high value of clustering coefficient

means that there is a higher amount of redundant communication among nodes.

5. Overlay Cost. If we assume that a link in the overlay has a cost, (e.g. derived from
latency), then the overlay cost is the sum of all the costs of the links that form the

overlay.

2.3.3 Examples of Overlay Networks

T-MAN [28] is protocol to manage the topology of overlay networks, it is based on a
gossiping scheme, and proposes to build a wide range of structured overlay networks
(e.g., ring, mesh, tree, etc.). To achieve this, T-MAN expects a topology as an input to
the protocol, this topology is then materialized by employing a ranking method which is
applied by every node to compare the preference among possible neighbors iteratively.
Nodes periodically exchange their neighboring sets with peers in the system and keep
the nodes which rank higher according to the ranking method. A limitation of T-Man is
that it does not ensure stability of the in-degree of nodes during the optimization of the

overlay, and consequently, the overlay may not remain connected.

13

CHAPTER 2. RELATED WORK

Management Overlay Network [41] (MON) is an overlay network system aimed at
facilitating the management of large distributed applications. This protocol builds on-
demand overlay structures that allow users to execute instant management commands,
such as query the current status of the application, or push software updates to all the
nodes, consequently, MON has a very low maintenance cost when there are no commands
running.

The on-demand overlay construction allows the creation of two types of Overlay
Networks: trees and direct acyclic graphs. These overlays, in turn, can be employed
towards aggregating monitoring data related to the status of the devices. Limitations
from using MON are that the resulting overlays are susceptible to topology mismatch,
and do not ensure connectivity. Furthermore, since the topologies are supposed to be
short-lived, MON does not provide mechanisms for dealing with faults.

Hyparview [33] (Hybrid Partial View) gets its name from maintaining two exclusive
views: the active and passive view, which are distinguished by their size and maintenance
strategy.

The passive view is a larger view which consists of a random set of peers in the system,
it is maintained by a simple gossip protocol which periodically sends a message to a
random peer in the active view. This message contains a subset of the neighbors of the
sending node and a time-to-live (TTL), the message is forwarded in the system until the
TTL expires, updating the views of nodes it is forwarded to. In contrast, the active view
consists in a smaller view (around log(n)) created during the bootstrap of the protocol,
and actively maintained by monitoring peers with a TCP connection (effectively making
the active view connections bidirectional and act as a failure detector). Whenever peers
from the active view fail (detected by the active TCP conntection), nodes attempt to
replace them with nodes contained in the passive view.

Hyparview is often used as a peer sampling service for other protocols which rely on
the connections from the active view to collaborate (e.g. PlumTree [34]). It achieves high
reliability even in the face of high percentage of node failures, however, the resulting
topology is flat, which is not desirable given the taxonomy of edge environments we are
considering. Furthermore, it may suffer from topology mismatch, because of the random
nature of neighboring connections, the resulting neighboring connections may be very
distant in the underlying network.

X-BOT [36] is a protocol which constructs an unstructured overlay network where
neighboring relations are biased considering a particular, and parametrizable, metric.
This metric is provided by an oracle, the oracle is a component that exports a function
which accepts a pair of peers and attributes a cost to that neighboring connection, this cost
may take into account factors such as latency, ISP distribution, network stretch, among
others.

The rationale X-BOT is as follows: nodes maintain active and passive views similar
to Hyparview [33]. Then, nodes periodically trigger optimization rounds where they

attempt to bias a portion of their connections according to the oracle. This potentually

14

2.3. TOPOLOGY MANAGEMENT

addresses the previous concerns about the overlay topology mismatching the underlying
network, however, it still proposes a flat topology, which is also not adequate for the edge
environment taxonomy.

Overnesia [38] is a protocol which establishes an overlay composed of fully connected
groups of nodes, where all nodes within a group share the same identifier. Nodes join
the system by sending request to a bootstrap node which triggers a random walk, the
requesting node joins the group where its random walk terminates (either because it finds
an underpopulated group or because the TTL expires).

Intra-group membership consistency is enforced by an anti-entropy mechanism where
nodes within a group periodically exchange messages containing their own view of the
group. When a group detects that its size has become too large, it triggers a dividing pro-
cedure where splits the groups in two halves. Conversely, when the group size has fallen
bellow a certain threshold, nodes trigger a collapse procedure, where each node takes
the initiative to relocate itself to another group, resulting in the graceful collapse of the
group. Finally, inter-group links are acquired by propagating random walks throughout
the overlay.

As previously mentioned, establishing groups of nodes enables load-balancing, effi-
cient dissemination of queries, and fault-tolerance. However, limitations from Overnesia
arise from peers maintaining active connections to all members belonging to the same
group, and keeping the group membership up-to-date, which may limit system scalabil-
ity, finally, the overlay may suffer from topology mismatch, as two nodes within the same
group may be distant in the underlay.

Chord [56] is a well known structured overlay network where the protocol builds and
manages a ring topology, similar to overlay (E) in Figure 2.2. Each node is assigned an
m-bit identifier that is uniformly distributed in the id space. Then, peers are ordered by
identifier in a clockwise ring, where any data piece identified by k, is assigned to the first
peer whose identifier is equal or follows k in the identifier space.

Chord implements a system of "shortcuts" called the finger table. The finger table
contains at most m entries, each ith entry of this table corresponds to the first peer that
succeeds a certain peer 1 by 2/ in the ring. This means that whenever the finger table
is up-to-date, and the system is stable, lookups for any data piece only take logarithmic
time to finish.

Although Chord provides the a good trade-off between bandwidth and lookup latency
[40], it has its limitations: peers do not learn routing information from incoming requests,
links have no correlation to latency or traffic locality, and the overlay is highly susceptible
to churn. Finally, the ring topology is flat, which means that lower capacity nodes in the
ring may become a limitation instead of an asset in the context of routing procedures.

Pastry [50] is another well known DHT which assigns a 128-bit node identifier (nodeld)
to each peer in the system. The nodes are randomly generated, and consequently, are
uniformly distributed in the 128-bit nodeld space. Routing procedures are as follows: in

each routing step, messages are forwarded to nodes whose nodeld shares a prefix that

15

CHAPTER 2. RELATED WORK

is at least one bit closer to the key, if there are no nodes available, nodes route messages
towards the numerically closest nodeld. This routing procedure takes O(log N) routing
steps, where N is the number of Pastry nodes in the system.

This protocol has been widely used as a building block for Pub-Sub applications such
as Scribe [51] and file storage systems like PAST [16]. However, limitations from using
Pastry arise from the use of a numeric distance function towards the end of routing pro-
cedures, which creates discontinuities at some node ID values, and complicates attempts
at formal analysis of worst case behavior, in addition to establishing a flat topology which
mismatches the edge device taxonomy.

Tapestry [66] Is a DHT similar to Pastry [50], however, nodelDs are represented
taking into account a certain base b supplied as a parameter of the system. In routing
procedures, messages are incrementally forwarded to the destination digit by digit (e.g.
48 -> *#*98 -> *598 -> 4598), consequently, routing procedures theoretically take logb(n)
hops to their destination where b is the base of the ID space. Because nodes assume that
the preceding digits all match the current node’s suffix, nodes in Tapestry only need to
keep a constant size of entries at each route level, consequently, nodes contain entries for
a fixed-sized neighbor map of size b.log(N).

Kademlia [44] is a DHT where nodes are considered leaves distributed across a binary
tree. Peers route queries and locate data pieces by employing an XOR-based distance
function which is symmetric and unidirectional. Each node in Kademlia is a router where
its routing tables consist of shortcuts to peers whose XOR distance is between 2/ by 2/+!
in the ID space, given the use of the XOR metric, "closer" nodes are those that share a
longer common prefix.

The main benefits that Kademlia draws from this approach are: nodes learn routing
information from receiving messages, there is a single routing algorithm for the whole
routing process (unlike Pastry [50]) which eases formal analysis of worst-case behavior.
Finally, Kademlia exploits the fact that node failures are inversely related to uptime by
prioritizing nodes that are already present in the routing table.

Kelips [23] is a group-based DHT which exploits increased memory usage and con-
stant background communication to achieve reduced lookup time and message complex-
ity. Kelips nodes are split in k affinity groups split in the intervals [0,k—1] of the identifier
space, thus, with n nodes in the system, each affinity group contains 7 peers. Within
a group, nodes store a partial set of nodes contained in the same affinity group and a
small set of nodes lying in foreign affinity groups. With this architecture, Kelips achieves
O(1) time and message complexity in lookups, however, it has limited scalability when
compared to previous DHTs, given the increased memory consumption (O(v/n).

Rollerchain [45] is a protocol which establishes a group-based DHT by leveraging on
techniques from both structured and unstructured overlays (Chord and Overnesia). In
short, the Overnesia protocol materializes an unstructured overlay composed by logical
groups of physical peers who share the same identifier. Then, the peer with the lowest

identifier within each logical group joins a Chord overlay, obtains the adresses of other

16

2.4. RESOURCE LOCATION AND DISCOVERY

virtual peers, and distributes them among group members.

Rollerchain has the potential to enable a type of replication which has higher robust-
ness to churn events when compared to other other replication strategies, however, there
are limitations to this approach: (1) the load is unbalanced within members of each group,
as only one node is in charge of populating and balancing the inter-group links; (2) simi-
lar to Chord, nodes do not learn from incoming queries, which contrasts with other DHTs
such as Pastry; (3) the protocol has a higher maintenance cost when compared to a regular
DHT.

2.3.4 Discussion

Unstructured overlays are an attractive option towards federating large amounts of de-
vices in heavily dynamic environments. They provide a low clustering coefficient, are
flexible, and maintain good connectivity even in the face of churn. However, given their
unstructured nature, they are limited in certain scenarios, for example, when trying to

find a specific peer in the system.

Conversely, distributed hash tables enable efficient routing procedures with very low
message overhead, which makes them suitable for application-level routing. However,
given their strict neighboring rules, participating nodes cannot replace neighbors easily,
which hinders the fault-tolerance of these types of topologies, in addition, given the fact
that devices in edge environments have varied computational power and connectivity,

they may become a limitation instead of an asset in the context of routing procedures.

2.4 Resource Location and Discovery

Resource location systems are one of the most common applications of the P2P paradigm
[59], in a resource location system, a participant provided with a resource descriptor is
able to query other peers and obtain an answer to the location (or absence) of that resource

in the system within a reasonable amount of time.

To achieve this, a search strategy must be applied, which depends on both the struc-
ture of an overlay network (structured or unstructured), on the characteristics of the
resources, and on the desired results. For example, in the context of resource manage-
ment, if a peer wishes to offload a certain computation to other peers, one must employ
an efficient search strategy to find nearby available resources (e.g., storage capacity, com-
puting power, among others) in order to offload computations.

In this section we cover resource location and discovery, starting by the studying the
taxonomy of querying techniques for P2P systems, followed by the study of how resources
can be stored or indexed and looked up throughout the topologies studied in the previous

section.

17

CHAPTER 2. RELATED WORK

2.4.1 Querying techniques

Querying techniques consist of how peers describe the resources they need. Following, we
cover common querying techniques employed in resource location systems [59]: (1) Exact
Match queries specify the resource to search by the value of an unique attribute (i.e., an
identifier, commonly the hash of the value of the resource); (2) keyword queries employ
one or more keywords (or tags) combined with logical operators to describe resources
(e.g. "pop", "rock", "pop and rock"...); (3) range queries retrieve all resources whose value
is contained in a given interval (e.g. "movies with 100 to 300 minutes of duration");
(4) arbitrary queries aim to find a set of nodes or resources that satisfy one or more
arbitrary conditions (e.g. looking for a set resources with a certain format).

Provided with a way of describing their resource needs, peers need strategies to index
and retrieve the resources in the system, there are three popular techniques: centralized,

distributed over an unstructured overlay, or distributed over a structured overlay.

2.4.2 Centralized Resource Location

Centralized resource location relies on one (or a group of) centralized peers that index
all existing resources. This type of architecture greatly reduces the complexity of systems,
as peers only need to contact a subset of nodes to locate resources.

It is important to notice that in a centralized architecture, while the indexation of
resources is centralized, the resource access may still be distributed (e.g. a centralized
server provides the addresses of peers who have the files, and files are obtained in a pure
P2P fashion), a system which employs this architecture with success is BitTorrent [10].

Although centralized architectures are widely used nowadays, they lack the necessary
scalability to index the large number of dynamic resources we intend to manage, and have

limited fault tolerance to failures, which makes them unsuited for edge environments.

2.4.3 Resource Location on Unstructured Overlays

When employing an unstructured overlay for resource location, the resources are scat-
tered throughout all peers in the system, consequently, peers need to employ distributed
search strategies to find the intended resources, which is accomplished by disseminat-
ing queries through the overlay, there two popular approaches for accomplishing this in
unstructured overlays: flooding and random walks [59].

Flooding consits in peers eagerly forwarding queries to other peers in the system as
soon as they receive them for the first time, the objective of flooding is to contact a certain
number of distinct peers that may have the queried resource. One approach is complete
flooding, which consists in contacting every node in the system, this guarantees that
if the resource exists, it will be found. However, complete flooding is not scalable and

incurs significant message redundancy.

18

2.4. RESOURCE LOCATION AND DISCOVERY

Flooding with limited horizon minimizes the message overhead by attaching a TTL
to messages that limits the number of times a message can be retransmitted. However,
there is a trade-off for efficiency: flooding with limited horizon does not guarantee that
all resources will be found.

Random Walks are a dissemination strategy that attempts to minimize the commu-
nication overhead that is associated with flooding. A random walk consists of a message
with a TTL that is randomly forwarded one peer at a time throughout the network. Ran-
dom walks may also attempt to bias their path towards peers which are more likely to
have answers [12], this technique called a random guided walk. A common approach to
bias random walks is to use bloom filters [58], which are space-efficient probabilistic data
structures that allow the creation of imprecise distributed indexes for resources.

First generation of decentralized resource location systems relied on unstructured
overlays (such as Gnutella [22]) and employed simple broadcasts with limited horizon to
query other peers in the system. However, as the size of the system grew, simple flooding
techniques lacked the required scalability for satisfying the rising number of queries,
which triggered the emergence of new techniques to reduce the number of messages per
query, called super-peers.

Super-peers are peers which are assigned special roles in the system (often chosen
in function of their capacity or stability). In the case of resource location systems, super-
peers disseminate queries throughout the system. This technique is at the core of solu-
tions such as Gia [8], employed towards effectively reducing the number of peers that
have to disseminate queries on the second version of Gnutella [22].

SOSP-Net [19] (Self-Organizing Super-Peer Network) proposes a resource location
system composed by regular peers and super-peers that effectively employs feedback
concerning previous queries to improve the overlay network. Weak peers maintain links
to super-peers which are biased based on the success of previous queries, and super-peers
bias the routing of queries by taking into account the semantic content of each query.

However, even with super-peers, one problem that still remains in these systems is
finding very rare resources, which requires flooding the entire overlay. To circumvent
this, the third generation of resource location systems rely on Distributed Hash Tables to
ensure that even rare resources in the system can be found within a limited number of

communication steps.

2.4.4 Resource Location on Distributed Hash Tables

Resource location on structured overlays is often done by relying on the applicational
routing capabilities of distributed Hash Tables (DHTs). In a DHT, peers use hash functions
to generate node identifiers (IDS) which are uniformly distributed over the ID space.
Then, by employing the same hash function to generate resource IDs, and assigning a
portion of the ID space to each node, peers are able to map resources to the responsible

peers in a bounded number of steps, which makes them very suitable for (exact match

19

CHAPTER 2. RELATED WORK

queries) [59].

One particular type of DHT that is commonly employed in small sized resource lo-
cation systems is the One-Hop Distributed Hash Table (DHT), nodes in a one-hop DHT
have full membership of the system and, consequently, they can locally map resources
to known peers and perform lookups in O(1) time and message complexity. Facebook’s
Cassandra [32] and Amazon’s Dynamo [14] are widely used implementations of one-hop
DHTs.

There are two popular techniques for storing resources in a DHT, the first approach
is to store the resources locally, and publish the location of the resource in the DHT, this
way, the node responsible for the resource’s key only stores the locations of other nodes in
the system, and the resource may be replicated among distinct nodes composing system.

The second technique consists in transferring the entire resource to the responsible
node in the DHT, contrasting to the previous technique, the resources are not replicated:
due to consistent hashing, all nodes with the same resource will publish the resource in
the same location of the DHT.

2.4.5 Discussion

As mentioned previously, centralized resource location systems are unsuited for edge
environments, given that devices have low computational power and storage capabilities,
it is impossible for an edge device to index all the resources in a system.

Unstructured resource location systems are attractive to perform queries that search
for resources which are abundant in the system, however, this approach is inefficient
when performing exact match queries, as a finding the exact resource in an unstructured
resource location system requires flooding the entire system with messages. Conversely,
distributed hash tables are especially tailored towards exact match queries, but are less
robust to churn and are subject to low-capacity nodes being a bottleneck in routing
procedures.

In the context of the proposed solution, given that the resources we intend to manage
are present in all nodes (e.g., computing power, memory, among others), we believe
unstructured resource location is more suited. For example, if an edge device wishes to
find nearby computing resources to offload a certain task, it may employ a random walk.
On the other hand, if a peer wishes to find a larger set of computing resources to deploy

multiple application components, it may employ flooding techniques.

2.5 Resource Monitoring

In this section we will cover resource monitoring, which consists in tracking the state
of a certain aspects of a system, such as the device status, the capacity of links between

devices, the status of available resources in a given zone of the system, among others.

20

2.5. RESOURCE MONITORING

Resource monitoring is paramount for making effective management decisions regarding

task allocations and managing the overlay network.

2.5.1 Device Monitoring

A particularly hard problem in resource monitoring is fault detection, given the need to
ensure each component is monitored by at least one non-faulty component, even in the
face of joins, leaves, and failures of both nodes as well as network infrastructure. Most
fault-detectors rely on heartbeats, which consist in a peer sending a message periodically
to another peer in order to signal that it is functioning correctly.

Leitao et al. [35] proposes a decentralized device monitoring system by employing
Hyparview [33] as a decentralized monitoring fault detector, given the fixed number
of active connections, which ensures overlay connectivity, each peer will have at least
another non-faulty component monitoring it through the active TCP connection.

In addition to tracking device health, it is paramount to collect metrics regarding
the operation of the device, such as: (1) Network related metrics: devices need to be
interconnected across an underlying infrastructure which is continuously changing. This
raises concerns about the network link quality between devices across the system, es-
pecially if they are running time-critical services. Given this, it is paramount to track
network related metrics such as bandwidth, latency and link status. (2) Memory related
metrics: either related to volatile memory or persistent memory, it is important to track
the amount of free and used memory. (3) CPU metrics: the utilization of the CPU (e.g.,

user, sys, idle, wait).

2.5.2 Container Monitoring

As previously mentioned, containers are the solution which incurs less overhead when
it comes to sharing resources in the same node, given this, we now study tools which
monitor the status of containers and the applications executing inside them.

Docker [17] has a built tool called Docker Stats [15] which provides a live data stream
of metrics related to running containers. It provides information about the network I/0,
cpu and memory usage, among others.

Container Advisor [20] (cAdvisor) is a service which analyzes and exposes both re-
source usage and performance data from running containers. The information it collects
consists of resource isolation parameters, historical resource usage and network statistics.
cAdvisor includes native support for Docker containers and supports a wide variety of
other container implementations.

Agentless System Crawler (ASC) [9] is a monitoring tool with support for containers
that collects monitoring information including performance metrics, system state, and
configuration information. It provides the ability to build two types of plugins: func-
tion plugins for on-the-fly data aggregation or analysis, and output plugins for target

monitoring and analytics endpoints.

21

CHAPTER 2. RELATED WORK

There are many other tools which offer the ability to continuously collect metrics
about running containers, however, if we were to continuously store and transmit these
metrics, the amount of communication and processing needed to do this would quickly
overload the system. Consequently, there is the need to reduce the size of the data through

a process called aggregation.

2.5.3 Aggregation

Aggregation consists in the determination of important system wide properties in a decen-
tralized manner, it is an essential building block towards monitoring distributed systems
[11] [31]. It can be employed, for example, towards computing the average of available
computing resources in a certain part of the network, or towards identifying application
hotspots by aggregating the average resource usage in certain areas, among many other
uses. There are two properties of aggregation functions: decomposability and duplicate

sensitiveness.

Decomposability

For some aggregation functions, we may need to involve all elements in the multiset,
however, for memory and bandwidth issues, it is impractical to perform a centralized
computation, hence, the aim is to employ in-transit computation. In order to enable this,

it is required that the aggregation function is decomposable.

Intuitively, a decomposable aggregation function is one where a function may be de-
fined as a composition of other functions. Decomposable functions may self-decomposable,
where the aggregated value is the same for all possible combinations of all sub-multisets
partitioned in the multiset. This happens whenever the applied function is commutative
and associative (e.g. min, max, sum, count). A canonical example of a decomposable
function that is not self-decomposable is average, which consists in the sum of all pairs

divided by the count of peers that contributed to the aggregation.

Duplicate sensitiveness

The second property of aggregation is duplicate sensitiveness, and it is related to wether
a given value occurs several times in a multiset. Depending on the aggregation function
used, the presence of repeated values may influence the result, it is said that a function is
duplicate sensitive if the result of the aggregation function is influenced by the repeated
values (e.g. SUM). Conversely, if the aggregation function is duplicate insensitive, it can
be successfully repeated any number of times to the same multiset without affecting the
result (e.g. MIN and MAX). Table 2.2 classifies popular aggregation functions in function
of decomposability and duplicate sensitiveness as found in [31].

22

2.5. RESOURCE MONITORING

Decomposable Non-Decomposable
Self-decomposable
Duplicate insensitive Min, Max Range Distinct Count
Duplicate sensitive Sum, Count Average Median, Mode

Table 2.2: Decomposability and duplicate sensitiveness of aggregation functions

2.5.4 Aggregation techniques

In the following subsection, we provide context about the taxonomy of aggregation tech-

niques:

Hierarchical aggregation

Tree-based approaches leverage directly on the decomposability of aggregation functions.
Aggregations from this class depend on the existence of a hierarchical communication
structure (e.g. a spanning tree) with one root (also called the sink node). Aggregations
take place by splitting inputs into groups and aggregating values bottom-up in the hier-
archy.

Cluster-based techniques rely on clustering the nodes in the network according to
a certain criterion (e.g. latency, energy efficiency). In each cluster a representative is
responsible for local aggregation and for transmitting the results to other nodes.

Hierarchical approaches, due to taking advantage of device heterogeneity, are attrac-
tive in edge environments. However, due to the low computational power of devices, not

all nodes may be able to handle the additional overhead of maintaining the hierarchical

topology.

Continuous aggregation

Continuous aggregation consists in the continuous computation and exchange of partial
averages data among all active nodes in the aggregation process [11]. This type of aggrega-
tion is attractive for gossip protocols, where nodes may employ varied gossip techniques
to continuously share and update their values with random neighbors. Algorithms from
this category are also attractive to use in edge environments, because they provide high
accuracy while employing random unstructured overlays [30], consequently, the aggrega-

tion process retains the fault-tolerance and resilience to churn from these overlays.

2.5.5 Monitoring systems

We now discuss study popular monitoring systems in the literature, for each system
we analyze its advantages and drawbacks, followed by a discussions with the systems’
applicability to edge settings.

Astrolabe [49] is a distributed information management platform which aims at mon-
itoring the dynamically changing state of a collection of distributed resources. It intro-

duces a hierarchical architecture defined by zones, where a zone is recursively defined to

23

CHAPTER 2. RELATED WORK

be either a host or a set of non-overlapping zones. Each zone (minus the root zone) has a
local identifier, which is unique within the zone where it is contained. Zones are globally
identified by their zone name, which consists of the concatenation of all zone identifiers
within the path from the root to the zone.

Associated with each zone there is a Management Information Base (MIB), which
consists in a set of attributes from that zone. These attributes are not directly writable,
instead, they are generated by aggregation functions contained in special entries in the
MIB. Leaf zones are the exception to the aforementioned mechanism, leaf zones contain

virtual child zones which are directly writable by devices within that virtual child zone.

The aggregation functions which produce the MIBs are contained in aggregation func-
tion certificates (AFCs), these contain a user-programmable SQL function, a timestamp
and a digital signature. In addition to the function code, AFCs may contain other infor-
mation, an Information Request AFC, specifies which information to retrieve from each
participating host, and how to summarize the retrieved information. Alternatively, we
may have a Configuration AFC, used for specifying runtime parameters that applications

may use for dynamic configuration.

Astrolabe employs gossip, which provides an eventual consistency model: if updates
cease to exist for a long enough time, all the elements of the system converge towards
the same state. This is achieved by employing a gossip algorithm which selects another
agent at random and exchanges zone state with it. If the agents are within the same
zone, they simply exchange information relative to their zone. Conversely, if agents are
in different zones, they exchange information relative to the zone which is their least

common ancestor.

Not all nodes gossip information, within each zone, a node is elected (the authors
do not specify how) to perform gossip on behalf of that zone.Additionally, nodes can
represent nodes from other zones, in this case, nodes run one instance of the gossip
protocol per represented zone, where the maximum number of zones a node can represent

is bounded by the number of levels in the Astrolabe tree.

An agents’ zone is defined by the system administrator, which is a potential limitation
towards scalability, given that configuration errors have the potential to heavily raise
system latency and reduce traffic locality. Additionally, the original authors state that the
size of gossip messages scales with the branching factor, often exceeding the maximum
size of a UDP packet. Other limitations which arise from using Astrolabe are the high
memory requirements per participant due to the high degree of replication, and the
potential single point of failure within each zone due to the use of representatives.

Ganglia [43] is a distributed monitoring system for high performance computing
systems, namely clusters and grids. In short, Ganglia groups nodes in clusters, in each
cluster, there are representative cluster nodes which federate devices and aggregate inter-
nal cluster state. Then, representatives aggregate information in a tree of point-to-point

connections.

24

2.5. RESOURCE MONITORING

Ganglia relies on IP multicast to perform intra-cluster aggregation, it is mainly de-
signed to monitor infrastructure monitoring data about machines in a high-performance
computing cluster. Given this, its applicability is limited towards edge environments: (1)
clusters are situated in stable environments, which contrasts with the edge environment;
(2) it relies on IP multicast, which has been proven not to hold in a number of cases; (3)
has no mechanism to prevent network congestion; finally, (4) the project info page only
claims scalability up to 2000 nodes.

SDIMS [65] (Scalable Distributed Information Management System) proposes a com-
bination of techniques employed in Astrolabe [49] and distributed hash tables (in this
case, Pastry [50]). It is based on an abstraction which exposes the aggregation trees pro-
vided by a DHT such as Pastry.

Given a key k, an aggregation tree is defined by the the union of the routing paths
from all nodes to key k, where each routing step along the path to k corresponds to a
level in the aggregation tree. Then, aggregation functions are associated an attribute type
and name, and rooted at hash(attribute type, attribute name), which results in different
attributes with the same function being aggregated along trees rooted in different parts
of the DHT, which enables load-balancing.

This achieves communication and memory efficiency when compared to gossip-based
approaches, because MIBs have a lesser degree of replication, however, limitations which
arise from employing SDIMS is that each node acts as an intermediate aggregation point
for some attributes and as a leaf node for other attributes, which could potentially be a
problem in edge settings, given that low-capacity nodes may become overloaded if they
are intermediate aggregation points in multiple aggregation trees.

Prometheus [48] is an open-source monitoring and alerting toolkit originally built for
recording any purely numeric time series. It supports machine-centric monitoring as well
as monitoring of highly dynamic service-oriented architectures. This tool is especially
useful for querying and collecting multi-dimensional data collections, it offers a platform
towards configuring alerts, that trigger certain actions whenever a given criteria is met.

Prometheus allows federation, which consists in a server scraping selected time-series
from another Prometheus server. Federation is split in two categories, hierarchical feder-
ation and cross-service federation. In hierarchical federation, prometheus servers are orga-
nized into a topology which resembles a tree, where each server aggregates aggregated
time series data from a larger number of subordinated servers. Alternatively, cross-service
federation enables scraping selected data from another service’s prometheus server to

enable alerting and queries against both datasets within a single server.

2.5.6 Discussion

After the study of the literature related to monitoring systems, we believe there is a lack
of monitoring systems targeted towards edge settings, as popular existing solutions often

have centralized points of failure, and rely on techniques such as IP multicast, which

25

CHAPTER 2. RELATED WORK

make them unsuited for large-scale dynamic systems such as the ones found in edge
environments.

Furthermore, we argue that large-scale monitoring systems purely based on dis-
tributed hash tables [65] are unsuitable for edge environments, as devices are heavily
constrained in memory and often are unreliable routers (which a DHT assumes all nodes
can reliably do). Conversely, pure gossip systems such as Astrolabe [49] require heavy
amounts of message exchanges to keep information up-to-date, and require manual con-

figuration of the hierarchical tree, which may also be undesirable.

2.6 Resource Management

In this section we study resource management, which consists in providing resources
(e.g. computing power, memory, among other) to tenants (i.e. applications, frameworks,
among others) such that tenants can perform computations. In this section we cover
the different types of resource management solutions and study popular solutions in the

literature.

2.6.1 Resource Management Taxonomy

A resource management system aims at controlling the distribution of resources among
tenants. We may classify resource management architectures according to their control

and tenancy.

2.6.1.1 Tenancy

The term tenancy in resource management refers to whether or not underlying hardware
resources are shared among entities [25].

Single tenancy refers to an architecture in which a single instance of a software
application and supporting infrastructure serves one customer. In single-tenancy archi-
tectures, a customer (tenant) has nearly full control over customization of software and
infrastructure.

Multi-tenancy consists in tenants sharing multiple resources across multiple pro-
cesses and machines. This approach has clear advantages, as sharing the infrastructure
leads to lower costs (e.g. electricity), and companies of all sizes like to share infrastructure
in order to achieve lower operational costs.

However, providing performance guarantees and isolation in multi-tenant systems
is extremely hard, resource management systems must avoid mismatching the resource
allocation, as tenant-generated requests compete with each other and with the system gen-
erated tasks. Furthermore, tenant workload can change in unpredictable ways depending

on the input workload, the workload of other tenants in the system, and the underlying

topology.

26

2.6. RESOURCE MANAGEMENT

2.6.1.2 Control

Control refers to how resource management systems allocates tasks, there are two alter-
natives towards performing resource allocations: either centralized or decentralized.
Centralized control consists in a centralized component with a global view of the
state of the system making all decisions regarding resource allocations. Intuitively, given
that a centralized component generates manages all the resources in the system, this
component can easily enforce policies to achieve the desired performance guarantees or
fairness goals by identifying and only throttling the tenants or system activities responsi-

ble for resource bottlenecks [62].

Decentralized control architectures are defined by having the decision-making pro-
cess regarding resource allocations distributed across multiple components [25]. This
topic has yet not been subject to much research, although it is of extreme relevance to-
wards edge environments. For example, if the system is globally distributed, it may take
too long for a centralized controller to identify hotspots in a certain zone and load-balance
them.

One of the key challenges in distributed resource management is ensuring that the
components which perform resource assignments do not conflict with each other. Ad-
ditionally, in a multi-tenant decentralized resource management system, tenants may
request resources to different resource controllers in the system, and if they do not co-
ordinate themselves, the application may be provisioned with too many (or too little)

resources.

2.6.2 Resource Sharing Systems

Mesos [24] is a multi-tenant centralized resource sharing platform which attempts to
provide fine-grained resource sharing in a data center. The tenants for this platform are
frameworks such as HDFS [4], MapReduce [13], among others, which in turn support
multiple applications running within a DC. In short, the Mesos resource sharing system
consists of a master process which manages slave daemons running on each cluster node.
In order to achieve fault-tolerance for the master component, Mesos employs Zookeeper
[26] to maintain replicas, elect a new master, and transfer state to a new master in case
the active master fails.

The master implements fine-grained sharing of resources across frameworks by em-
ploying resource offers, which consist of lists containing free resources distributed among
slaves. The master makes decisions about how many resources to offer to each framework,
and the decision-making process is based on an arbitrary organizational policy, such as
fair sharing or priority. Each framework that wishes to use Mesos must implement a
scheduler and an executor. The scheduler registers with the Mesos master to receive re-
source offers, and the executor is the process that is launched on slave nodes to run the

framework’s tasks.

27

CHAPTER 2. RELATED WORK

A limitation of the Mesos resource sharing platform is that it is not scalable, given the
central component issuing resource allocations (the original authors mention the system
scales up to 50000 slave daemons on 99 physical machines), which is not enough for an
edge environment. Furthermore, the resource offer model forces frameworks to employ a

specific programming model based on schedulers and executors, which is too restrictive.

Yarn (Yet Another Resource Negotiator) [60] is a centralized multi-tenant resource
sharing platform which attempts decouple the programming model from the resource
management infrastructure, and delegate many scheduling functions to per-application
components. The architecture of YARN is composed by: a per-cluster Resource Manager
(RM), multiple Application Masters (AM), and Node Managers (NM). The Resource
Manager (RM) tracks resource usage and node liveness, enforces allocation invariants

and arbitrates contention among tenants.

Application Masters (AM) run arbitrary user code, their duties in the system consist of
managing the lifecycle aspects, including dynamically increasing and decreasing resource
consumption, managing the flow of execution, and handling faults. Node Managers (NM)
are worker daemons, whose responsibilities consist of managing container dependencies,

monitoring their execution, and providing a set of services for them.

AMs send resource requests to the RM, containing the number of containers to re-
quest, the resources per container, locality preferences, and a priority level within the
application. These requests are designed to capture the needs of applications, while at
the same time removing application concerns (such as task dependencies) from the sched-
uler. Because the RM is in charge of processing and scheduling all task distributions
for each request made by AMs, it is effectively a monolithic scheduler. By consequence,
there is a unique point of failure, which makes this system inadequate for large scale edge

environments.

Omega [52] is a scheduler designed for grid computing systems composed by sched-
ulers and workers. Each scheduler receives large amounts of jobs composed by either one
or many tasks that have to be scheduled among workers. Contrary to YARN, which is
monolithic, OMEGA uses multiple schedulers per cluster, each with a shared global view

of the cluster state.

Schedulers make task placement decisions according to their view of the cluster state
and their scheduling policy. If two or more schedulers attempt to schedule a task to the
the same worker (i.e., generating a conflict), the worker first tries to accommodate both

tasks, if it cant, it rejects the least important one.

One advantage of OMEGA in relation to MESOS is that MESOS resource attributions
“lock” the resources to the corresponding framework, which means that only one frame-
work is examining a resource at a time. The main limitations from OMEGA are: (1) in
case the grid becomes overloaded, resource allocations can potentially start interfering
with each other; (2) scheduling policies are harder to ensure; finally (3) all schedulers

must have global knowledge of the system.

28

2.6. RESOURCE MANAGEMENT

Edge NOde Resource Management [64] (ENORM) is framework aimed at employ-
ing edge resources towards applications by provisioning and auto-scaling edge node
resources. ENORM proposes a three-tier architecture: (1) the Cloud tier, where appli-
cation servers are hosted; (2) the middle tier, where the edge nodes are situated; (3) the

bottom tier, where user devices (e.g. smartphones, wearables, gadgets) are situated.

To enable the use edge nodes, ENORM deploys a cloud server manager on each ap-
plication server, which communicates with potential edge nodes requesting computing
services, deploys partitioned servers on the edge nodes, and finally receives updates from

the edge nodes to update the global view of the application server on the cloud.

ENORM authors tested the designed system using an online game based on Pokemon
GO (iPokemon)[7], the framework partitions the game server and sends user data relevant
to the geographical location of the edge node. Users from the relevant geographical
zone connect to the edge server and are serviced as if they were connected to the data
center. Limitations from this framework are the large number of required information
to perform deployments, and the lack of fault-tolerance and scalability, which may arise
from employing a centralized component to perform monitoring and management of

resources.

FogTorch [5] is a service deployment framework aimed at determining eligible de-
ployments for an application over a given Fog infrastructure, modeled by: (1) Cloud Data
Centers, which are denoted by their location and software capabilities they provided;
(2) Fog Nodes, which consist of tuples containing the location, hardware and software
capabilities and the things directly reachable from the fog node; (3) Things, which are
represented by a tuple denoting the thing (sensor or actuator) location and its type; (4)
QoS profiles, which are sets of QoS profiles consists of a set of pairs composed by the
latency and bandwidth of a communication link. (5) Applications, which are composed of
independent sets of components, each with a set of requirements regarding QoS profiles,

hardware and software capabilities, and things.

The authors model the notion of service deployments as restrictions over the afore-
mentioned system model and employ a greedy heuristic which reduces the search space
of devices constituting options for these service deployments. FogTorch originated Fog-
TorchPI [6], this solution employs the same system model, but instead of employing a
greedy algorithm, employs Monte Carlo simulations to returns a set of eligible deploy-

ments along with their QoS-assurance, heuristic rank and resource consumptions.

FogTorch provides a comprehensive system model which is able to model many differ-
ent types of application requirements, however, a limitation from the proposed service
deployment strategy is that it requires a large amount of information, and a global up-to-

date view of the system, limiting system scalability.

29

CHAPTER 2. RELATED WORK

2.6.3 Discussion

Although resource management systems have been present for many years, these are often
tailored towards small scale environments composed by high-capacity devices in stable
environments, which contrast with the edge of the network, where devices are extremely
numerous, operate on a decentralized fashion, and are highly heterogenous.

We argue that a centralized controller is not the ideal solution for an edge environment,
given the fact that as the number of devices in the system increases, so does the number of
resources to track, and the harder it is for a centralized component to have an up-to-date
global view of the system.

Due to their low capacity, devices in the edge of the network are very susceptible
to workload changes, for example, a 5G tower which is hosting a service cannot handle
a drastic increase in the number of users it is serving. In this scenario, we argue that
in order to maintain pre-established performance criteria, devices must autonomously
make resource management decisions such as scaling horizontally or vertically in order

quickly meet the demands of users.

2.7 Summary

In this chapter we discussed relevant state of the art found in the literature towards
devising a resource management and monitoring platform tailored for edge environments.
We began by studiying the devices which materialize these environments and debated
the applicability of popular execution environments for edge-enabled applications.

Following, we addressed popular architectures and implementations of both struc-
tured and unstructured overlay networks, and analyzed popular techniques in the litera-
ture used towards performing effective resource location and discovery in these overlays.
After this, we examined related work towards collecting metrics in a decentralized man-
ner regarding not only the execution of devices, but also the aforementioned execution
environments. Finally, we covered popular resource management systems which perform
resource scheduling based on these metrics.

In the next chapter we present the proposed solution that we named DEMMON, which
draws inspiration from the study of the state of the art to enable the decentralized man-

agement and monitoring of resources in the edge of the network.

30

CHAPTER

PLANNING

In this Chapter we begin by defining the system model and the intuition for the proposed
solution, followed by defining and discussing a set of metrics to verify its success through
experimental work. In the last section we present the work plan for the remaining time
of the thesis.

As previously mentioned, the challenge we propose to address is the creation of a
large-scale decentralized management and monitoring infrastructure tailored for het-
erogenous edge devices. This infrastructure may be used to track the state of applications
(for load balancing), discover nearby devices to offload tasks, or find a set of devices to
deploy a new application in a strategic location, enabling in the future the autonomic

management of edge-enabled applications.

3.1 System Model

As defined in Section 2.1, the edge environment is composed by devices classified in levels
ranging from 0-7. From this classification, we outline two major categories:

Stable devices consist of devices ranging from levels 0-5 in the taxonomy. We con-
sider devices in these levels “stable” because they are usually connected across a wired
medium (except in the case of laptops), and have enough computational capacity towards
performing monitoring and management of tasks.

Unstable devices comprises devices in levels six and 7 of the taxonomy. In the case
of mobile devices (level 6), we consider them unstable due to their low computational
power and the fact that their physical location may change rapidly, which may lead to
additional overhead in tracking their location. Given that devices in levels 6 and 7 are
connected across a wireless medium, raising a large number of concerns that are outside

the scope of this work, we intend to employ only stable devices in order to materialize

31

CHAPTER 3. PLANNING

Edge Resource Sharing Platform

edge-enabled applications (multiple components)

3
requests deployment targets notifies changes in component location

Resource Management

requests resource location alerts
Resource Location and Discovery Resource Monitoring
discovers resources through monitors resources through

organizes

[ﬂ-s“Q] [ﬂ.,,v“[]] Devices [ﬂ-,«“Q] [ﬂ»s"‘Q]

Figure 3.1: High-level architecture of the proposed resource sharing platform

our solution, unstable devices may employ stable devices as gateways to the system.

Following, we have applications. In the context of this thesis, we will focus on the
management of edge-enabled applications running on containers. We consider these
as applications which are decomposable into multiple independent components (all) be
hosted in a single container and function as a monolithic application, or alternatively have
components hosted by containers scattered throughout the system.

Consequently, we define a set of operations which are critical for this type of applica-
tions: replicating, migrating and decomissioning. Replicating consists of creating a copy of
an application component and deploying it to another device in the system, migrating
means transferring a component (or multiple components) of the application to another
device, and decomissioning consists of removing / disabling an application component
running in a given device. These three operations support the lifecycle of the applications,
and enable both scaling horizontally through replication, and scaling vertically through
migration (depending on the computational capabilities of the target device), in addition
to allowing applications to improve their latency.

Finally, during the development of our solution, we assume that there is at most one
simultaneous unexpected failure across the data centers belonging to the system, and
assume that paths between any two nodes in the system have the same chance of failure

regardless of the administrative domains they belong to.

3.2 Proposed Solution

In Figure 3.1, we illustrate the proposed architecture of the solution we intend to design,

which is composed of four co-dependent mechanisms exercised by every participant of

32

3.3. EVALUATION

the system (that executes the management solution).

At the bottom, we have topology management, whose responsibilities consist of: (1)
ensuring that devices belonging to the overlay remain connected at all times; (2) materi-
alizing a hierarchical topology based on the capabilities of devices composing the system;
(3) assuring that devices have at least one non-faulty device connected to it; (4) detecting
failures of the participating nodes. This mechanism, inspired in works such as Astrolabe
[49], enables the correct behavior of the remaining components.

Following, we have resource monitoring, the objectives of this mechanism consist
of: (1) collecting metrics about the containers hosting the applicational components; (2)
aggregating the collected data in a decentralized manner; (3) deciding whether an appli-
cation component hosted on certain device is not performing according to the established
performance criteria; (4) alerting the resource management mechanism about failures in
the containers and components performing sub-optimally.

The resource management mechanism handles the alerts emitted by the resource
monitoring mechanism and, depending on the alert, immediately relocates application
components to ensure they remain functional. As previously mentioned, scheduling op-
timal deployment configurations for application components is out of the scope of our
work, given that it is an entire research topic on its own. With this in mind, our archi-
tecture will be tailored to accommodate an additional layer which performs resource
scheduling. We envision this layer as an edge-enabled application, composed by multi-
ple components, that will employ decentralized scheduling algorithms to determine the
aforementioned optimal deployments.

To enable layer, the resource management mechanism will provide two operations: a
subscription operation which enables the resource scheduling mechanism to be notified
whenever an application component changes its location due to the alerts or failures, and
a operation for querying available resources and issuing deployment configurations.

Lastly, we have the resource location and discovery mechanism. This mechanism
will offer multiple search strategies which, in turn, will be employed by the resource
management layer to replace failed components or to satisfy queries arising from the

resource scheduling components.

3.3 Evaluation

In order to evaluate our work, we will employ a real-world scenario composed by devices
ranging across the different levels of capacity and availability. The devices composing the
test scenario consist of: devices in Cloud Environments (e.g. AWS or Azure), devices in
the Grid5000 cluster and approximately 20 Raspberry Pis.

We intend to develop two simple solutions that will be representative of common
architectures of monitoring systems. The first and most popular approach consists of a
centralized controller for tracking and managing the state of devices and components

running on them. On the other hand, the second approach consists of a flat decentralized

33

CHAPTER 3. PLANNING

model, meaning that all nodes in the system handle similar amounts of monitoring infor-
mation. These simple solutions will serve as a baseline for evaluating the benefit of our
solution.

In order to compare solutions, we define a set of system and applicational-related
metrics. System metrics consist of the usage of system resources such as cpu, memory,
and bandwidth in each node of the system, followed by the number of required control
messages to maintain the overlay.

Application metrics are related to the monitoring infrastructure running atop the
overlay. The first metric to consider is cost, that consists in the relation between the
number of messages sent and the value of the information. Following, we have informa-
tion freshness, that tracks the timeliness of the information each node has of the system,
and, finally, information precision, which represents the difference between the obtained

monitoring data and the real status of the device / applications running on it.

3.4 Scheduling

In this section we outline the identified tasks and the proposed work plan for the remain-

ing of this thesis.

1. Topology Management (2/3/2020 - 4/4/2020)
a) Devise and develop the overlay algorithm which establishes the hierarchical
topology (2/3/2020 - 31/3/2020)
b) Validate the devised algorithm (21/3/2020 - 4/4/2020)
2. Resource Monitoring (2/4/2020 - 23/5/2020)
a) Define the metrics to collect, and devise or adapt a monitoring probe which

extracts these metrics from deployed components (2/4/2020 - 8/4/2020)

b) Implement an adapt aggregation techniques for these metrics based on the
overlay structure (10/4/2020 - 1/5/2020)

c) Create or adapt an alerting solution which analyzes the aggregation results,
detects anomalies on running components (e.g., sub-optimal performance) and
emits alerts (1/5/2020 - 14/5/2020)

d) Test the resource monitoring mechanism (26/4/2020 - 23/5/2020)
3. Resource Location and Discovery (22/5/2020 - 6/10/2020)

a) Implement search algorithms which serve as tools for finding certain resources
in the system (22/5/2020 - 7/6/2020)

b) Test the implemented search algorithms (31/5/2020 - 10/6/2020)

4. Resource Management (7/6/2020 - 3/7/2020)

34

3.4. SCHEDULING

a) Implement the handlers for the alerts emitted by the monitoring mechanism
(7/6/2020 - 21/6/2020)

b) Implement subscription operations which, in turn, will be employed by the
aforementioned resource scheduler (21/6/2020 - 30/6/2020)

c) Test the resource management mechanism (27/6/2020 - 3/7/2020)
5. Evaluation (1/7/2020-15/8/2020)
a) Develop the centralized and flat solutions to serve as baseline for evaluating
the performance of the system (1/7/2020 - 13/7/2020)
b) Develop simple mock-ups of edge-enabled applications (14/7/2020-21/7/2020)

c) Perform an experimental assessment of the solution in a realistic test bed,
and compare the performance between the developed system and the baseline
solutions (22/7/2020 - 15/8/2020)

6. Thesis document (1/7/2020 - 23/9/2020)

a) Review related work (1/7/2020 - 31/7/2020)
b) Writing the document (3/3/2020 - 23/9/2020)
c) Reviewing the written document (3/9/2020 - 23/9/2020)

=team

Thesis

Topology Management A

A
B

Resource Monitoring
A
B
©
D

Resource Location and Discovery [r——
A [: |
B [|
Resource Management [r—
A
B
©
Evaluation
A —
B (]
© | —

Thesis Document
A
B 1
c 1

Figure 3.2: Gantt chart illustrating the work plan

35

BIBLIOGRAPHY

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and et al. “A View of Cloud Computing.” In:
Commun. ACM 53.4 (Apr. 2010), 50-58. 1ssn: 0001-0782. po1: 10.1145/1721654.
1721672. urL: https://doi.org/10.1145/1721654.1721672.

D. Bernstein. “Containers and Cloud: From LXC to Docker to Kubernetes.” In:
IEEE Cloud Computing 1.3 (2014), pp. 81-84. 1ssN: 2372-2568. por: 10.1109/MCC.
2014 .51.

E. Bonomi, R. Milito,]J. Zhu, and S. Addepalli. “Fog computing and its role in the
internet of things.” In: Proceedings of the first edition of the MCC workshop on Mobile
cloud computing. 2012, pp. 13-16.

D. Borthakur et al. “HDFS architecture guide.” In: Hadoop Apache Project 53.1-13
(2008), p. 2.

A. Brogi and S. Forti. “QoS-aware deployment of IoT applications through the
fog.” In: IEEE Internet of Things Journal 4.5 (2017), pp. 1-8. 1ssN: 23274662. por:
10.1109/J10T.2017.2701408.

A. Brogi, S. Forti, and A. Ibrahim. “How to best deploy your fog applications,
probably.” In: 2017 IEEE 1st International Conference on Fog and Edge Computing
(ICFEC). IEEE. 2017, pp. 105-114.

Catch Pokemon in the Real World with Pokemon GO! urvr: https://www.pokemongo.

com/en-us/.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. “Making
Gnutella-like P2P Systems Scalable.” In: Computer Communication Review 33.4
(2003), pp. 407-418. 1ssn: 01464833. por: 10.1145/863997.864000.

Cloudviz. cloudviz/agentless-system-crawler. 2019. urL: https://github.com/

cloudviz/agentless-system-crawler.

B. Cohen. “Incentives build robustness in BitTorrent.” In: Workshop on Economics
of Peer-to-Peer systems. Vol. 6. 2003, pp. 68-72.

P. Costa and J. Leitao. “Practical Continuous Aggregation in Wireless Edge Envi-
ronments.” In: Oct. 2018, pp. 41-50. por: 10.1109/SRDS.2018.00015.

37

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/JIOT.2017.2701408
https://www.pokemongo.com/en-us/
https://www.pokemongo.com/en-us/
https://doi.org/10.1145/863997.864000
https://github.com/cloudviz/agentless-system-crawler
https://github.com/cloudviz/agentless-system-crawler
https://doi.org/10.1109/SRDS.2018.00015

BIBLIOGRAPHY

[12]

[13]

[14]

[19]

[20]
[21]

[22]
(23]

[24]

[25]

A. Crespo and H. Garcia-Molina. “Routing indices for peer-to-peer systems.” In:
Proceedings 22nd International Conference on Distributed Computing Systems. 2002,
pp. 23-32. por: 10.1109/ICDCS.2002.1022239.

J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large clus-
ters.” In: Communications of the ACM 51.1 (2008), pp. 107-113.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: amazon’s highly available
key-value store.” In: ACM SIGOPS operating systems review. Vol. 41. 6. ACM. 2007,
pp. 205-220.

docker stats. 2020. urr: https: / / docs . docker . com/ engine /[reference /

commandline/stats/.

P. Druschel and A. Rowstron. “PAST: a large-scale, persistent peer-to-peer storage
utility.” In: Proceedings Eighth Workshop on Hot Topics in Operating Systems. 2001,
pp. 75-80. po1: 10.1109/HOT0S.2001.990064.

Empowering App Development for Developers. URL: https://www.docker.com/.

M. Finnegan. Boeing 787s to create half a terabyte of data per flight, says Virgin Atlantic.
2013. urL: https://www.computerworld.com/article/3417915/boeing-787s-
to-create-half-a-terabyte-of-data-per-flight--says-virgin-atlantic.
html.

P. Garbacki, D. H. Epema, and M. Van Steen. “Optimizing peer relationships in
a super-peer network.” In: 27th International Conference on Distributed Computing
Systems (ICDCS’07). IEEE. 2007, pp. 31-31.

Google. google/cadvisor. 2020. urRL: https://github.com/google/cadvisor.

A. S. Grimshaw, W. A. Wulf, and C. The Legion Team. “The Legion Vision of a
Worldwide Virtual Computer.” In: Commun. ACM 40.1 (Jan. 1997), pp. 39-45.
1ssN: 0001-0782. por1: 10.1145/242857 .242867. urL: https://doi.org/10.
1145/242857.242867.

Gtk-Gnutella. 2019. urL: https://sourceforge.net/projects/gtk-gnutella/.
I. Gupta, K. Birman, P. Linga, A. Demers, and R. Van Renesse. “Kelips: Building
an efficient and stable P2P DHT through increased memory and background over-

head.” In: International Workshop on Peer-to-Peer Systems. Springer. 2003, pp. 160—
169.

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S.
Shenker, and I. Stoica. “Mesos: A platform for fine-grained resource sharing in the
data center.” In: NSDI. Vol. 11. 2011. 2011, pp. 22-22.

C. H. Hong and B. Varghese. “Resource management in fog/Edge computing: A sur-
vey on architectures, infrastructure, and algorithms.” In: ACM Computing Surveys
52.5(2019). 1ssn: 15577341. por: 10.1145/3326066.

38

https://doi.org/10.1109/ICDCS.2002.1022239
https://docs.docker.com/engine/reference/commandline/stats/
https://docs.docker.com/engine/reference/commandline/stats/
https://doi.org/10.1109/HOTOS.2001.990064
https://www.docker.com/
https://www.computerworld.com/article/3417915/boeing-787s-to-create-half-a-terabyte-of-data-per-flight--says-virgin-atlantic.html
https://www.computerworld.com/article/3417915/boeing-787s-to-create-half-a-terabyte-of-data-per-flight--says-virgin-atlantic.html
https://www.computerworld.com/article/3417915/boeing-787s-to-create-half-a-terabyte-of-data-per-flight--says-virgin-atlantic.html
https://github.com/google/cadvisor
https://doi.org/10.1145/242857.242867
https://doi.org/10.1145/242857.242867
https://doi.org/10.1145/242857.242867
https://sourceforge.net/projects/ gtk-gnutella/
https://doi.org/10.1145/3326066

BIBLIOGRAPHY

[27]
(28]

[29]

[32]

[33]

[37]

[38]

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems.” In: USENIX annual technical conference. Vol. 8. 9.
2010.

Infrastructure for container projects. URL: https://linuxcontainers.org/.

M. Jelasity and O. Babaoglu. “T-Man: Gossip-based overlay topology management.”
In: International Workshop on Engineering Self-Organising Applications. Springer.
2005, pp. 1-15.

M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. Van Steen. “Gossip-
based peer sampling.” In: ACM Transactions on Computer Systems (TOCS) 25.3
(2007), 8—es.

M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-Based Aggregation in Large
Dynamic Networks.” In: ACM Transactions on Computer Systems 23 (Aug. 2005),
pp. 219-252. por: 10.1145/1082469.1082470.

P. Jesus, C. Baquero, and P. S. Almeida. “A Survey of Distributed Data Aggregation
Algorithms.” In: CoRR abs/1110.0725 (2011). arXiv: 1110.0725. urL: http:
[/arxiv.org/abs/1110.0725.

A.Lakshman and P. Malik. “Cassandra: a decentralized structured storage system.”
In: ACM SIGOPS Operating Systems Review 44.2 (2010), pp. 35-40.

J. Leitao, J. Pereira, and L. Rodrigues. “HyParView: A Membership Protocol for
Reliable Gossip-Based Broadcast.” In: 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’07). 2007, pp. 419-429. por:
10.1109/DSN. 2007 . 56.

J. Leitao,]J. Pereira, and L. Rodrigues. “Epidemic broadcast trees.” In: 2007 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007). 1EEE.
2007, pp. 301-310.

J. Leitao, L. Rosa, and L. Rodrigues. “Large-scale peer-to-peer autonomic monitor-
ing.” In: 2008 IEEE Globecom Workshops. IEEE. 2008, pp. 1-5.

J. Leitao, J. P. Marques, J. Pereira, and L. Rodrigues. “X-bot: A protocol for resilient
optimization of unstructured overlay networks.” In: IEEE Transactions on Parallel
and Distributed Systems 23.11 (2012), pp. 2175-2188.

J. Leitdo, P. A. Costa, M. C. Gomes, and N. Preguica. “Towards Enabling Novel
Edge-Enabled Applications.” In: 732505 (2018). arXiv: 1805.06989. urL: http:
/larxiv.org/abs/1805.06989.

J. C. A. Leitao and L. E. T. Rodrigues. “Overnesia: a resilient overlay network
for virtual super-peers.” In: 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems. IEEE. 2014, pp. 281-290.

39

https://linuxcontainers.org/
https://doi.org/10.1145/1082469.1082470
https://arxiv.org/abs/1110.0725
http://arxiv.org/abs/1110.0725
http://arxiv.org/abs/1110.0725
https://doi.org/10.1109/DSN.2007.56
https://arxiv.org/abs/1805.06989
http://arxiv.org/abs/1805.06989
http://arxiv.org/abs/1805.06989

BIBLIOGRAPHY

[39]

[43]

[50]

[51]

C.Li, Y. Xue, J. Wang, W. Zhang, and T. Li. “Edge-Oriented Computing Paradigms:
A Survey on Architecture Design and System Management.” In: ACM Comput.
Surv. 51.2 (Apr. 2018). 1ssN: 0360-0300. por: 10.1145/3154815. urL: https:
//doi.org/10.1145/3154815.

J. Li, J. Stribling, T. Gil, R. Morris, and M. Kaashoek. “Comparing the Performance
of Distributed Hash Tables Under Churn.” In: Mar. 2004. por: 10.1007/978-3-
540-30183-7_09.

J. Liang, S. Y. Ko, I. Gupta, and K. Nahrstedt. “MON: On-Demand Overlays for
Distributed System Management.” In: WORLDS. Vol. 5. 2005, pp. 13-18.

Y. Mao, C. You, J. Zhang, K. Huang, and K. Letaief. “A Survey on Mobile Edge
Computing: The Communication Perspective.” In: IEEE Communications Surveys &
Tutorials PP (Aug. 2017), pp. 1-1. po1: 10.1109/COMST.2017.2745201.

M. L. Massie, B. N. Chun, and D. E. Culler. “The ganglia distributed monitoring sys-
tem: design, implementation, and experience.” In: Parallel Computing 30.7 (2004),
pp- 817-840.

P. Maymounkov and D. Mazieres. “Kademlia: A peer-to-peer information sys-
tem based on the xor metric.” In: International Workshop on Peer-to-Peer Systems.
Springer. 2002, pp. 53-65.

J. Paiva, J. Leitao, and L. Rodrigues. “Rollerchain: A DHT for Efficient Replication.”
In: 2013 IEEE 12th International Symposium on Network Computing and Applications.
2013, pp. 17-24. po1: 10.1109/NCA.2013.29.

G. Peng. “CDN: Content distribution network.” In: arXiv preprint cs/0411069
(2004).

E. Preeth, F. J. P. Mulerickal, B. Paul, and Y. Sastri. “Evaluation of Docker contain-
ers based on hardware utilization.” In: 2015 International Conference on Control
Communication & Computing India (ICCC). IEEE. 2015, pp. 697-700.

Prometheus. From metrics to insight. URL: https://prometheus.io/.

R. V. A.N. Renesse, K. P. Birman, and W. Vogels. “Astrolabe: A Robust and Scalable
Technology for Distributed System Monitoring, Management, and Data Mining.”
In: ACM Transactions on Computer Systems 21.2 (2003), pp. 164-206.

A. Rowstron and P. Druschel. “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems.” In: IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing. Springer. 2001,
pp. 329-350.

A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. “Scribe: The Design
of a Large-Scale Event Notification Infrastructure.” In: Networked Group Communi-
cation. Ed. by J. Crowcroft and M. Hofmann. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 30-43. 1sBN: 978-3-540-45546-2.

40

https://doi.org/10.1145/3154815
https://doi.org/10.1145/3154815
https://doi.org/10.1145/3154815
https://doi.org/10.1007/978-3-540-30183-7_9
https://doi.org/10.1007/978-3-540-30183-7_9
https://doi.org/10.1109/COMST.2017.2745201
https://doi.org/10.1109/NCA.2013.29
https://prometheus.io/

BIBLIOGRAPHY

[52]

[55]

[56]

[59]

[60]

[61]

M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and]J. Wilkes. “Omega: flexi-
ble, scalable schedulers for large compute clusters.” In: SIGOPS European Confer-
ence on Computer Systems (EuroSys). Prague, Czech Republic, 2013, pp. 351-364.
URL: http://eurosys2013. tudos.org/wp-content /[uploads /2013 /paper/
Schwarzkopf . pdf.

Self-driving Cars Will Create 2 Petabytes Of Data, What Are The Big Data Opportunities
For The Car Industry? urL: https://datafloq.com/read/self-driving-cars-
create-2-petabytes-data-annually/172.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. “Edge Computing: Vision and Chal-
lenges.” In: IEEE Internet of Things Journal 3.5 (2016), pp. 637-646. 1ssN: 2372-
2541. por: 10.1109/JI0T.2016.2579198.

J. E. Smith and Ravi Nair. “The architecture of virtual machines.” In: Computer
38.5(2005), pp. 32-38. 1ssN: 1558-0814. por: 10.1109/MC.2005.173.

I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and
H. Balakrishnan. “Chord: a scalable peer-to-peer lookup protocol for internet
applications.” In: IEEE/ACM Transactions on Networking (TON) 11.1 (2003), pp. 17—
32.

D. Stutzbach and R. Rejaie. “Understanding churn in peer-to-peer networks.” In:
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement. ACM.
2006, pp. 189-202

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. “Theory and Practice of Bloom
Filters for Distributed Systems.” In: IEEE Communications Surveys Tutorials 14.1
(2012), pp. 131-155. 1ssn: 2373-745X. por: 10.1109/SURV.2011.031611.00024.

“Topology Management for Unstructured Overlay Networks.” In: Technical Univer-
sity of Lisbon (2012).

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed,
and E. Baldeschwieler. “Apache Hadoop YARN: yet another resource negotiator.”
In: SOCC ’13. 2013.

T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt. “Cloudlets: Bringing the Cloud
to the Mobile User.” In: Proceedings of the Third ACM Workshop on Mobile Cloud
Computing and Services. MCS "12. Low Wood Bay, Lake District, UK: Association
for Computing Machinery, 2012, pp. 29-36. 1sBN: 9781450313193. por: 10.1145/
2307849.2307858. urL: https://doi.org/10.1145/2307849.2307858.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
“Large-scale cluster management at Google with Borg.” In: Proceedings of the Tenth
European Conference on Computer Systems. 2015, pp. 1-17.

41

http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172
https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2005.173
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1145/2307849.2307858
https://doi.org/10.1145/2307849.2307858

BIBLIOGRAPHY

[63]

[64]

[65]

[66]

M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. “Osmotic computing: A
new paradigm for edge/cloud integration.” In: IEEE Cloud Computing 3.6 (2016),
pp. 76-83.

N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. “ENORM: A frame-
work for edge node resource management.” In: IEEE transactions on services com-
puting (2017).

P. Yalagandula and M. Dahlin. “A Scalable Distributed Information Management
System.” In: SIGCOMM Comput. Commun. Rev. 34.4 (Aug. 2004), 379-390. 1ssN:

0146-4833. por: 10.1145/1030194.1015509. urL: https://doi.org/10.1145/
1030194.1015509.

B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. “Tapestry: A
Resilient Global-Scale Overlay for Service Deployment.” In: IEEE Journal on Selected
Areas in Communications 22 (July 2003). por: 10.1109/JSAC.2003.818784.

42

https://doi.org/10.1145/1030194.1015509
https://doi.org/10.1145/1030194.1015509
https://doi.org/10.1145/1030194.1015509
https://doi.org/10.1109/JSAC.2003.818784

	Introduction
	Motivation
	Context
	Expected Contributions
	Document structure

	Related Work
	Edge Environment
	Edge Computing
	Edge Environment Taxonomy
	Discussion

	Execution Environments
	Virtual Machines
	Containers
	Discussion

	Topology Management
	Taxonomy of Overlay Networks
	Overlay Network Metrics
	Examples of Overlay Networks
	Discussion

	Resource Location and Discovery
	Querying techniques
	Centralized Resource Location
	Resource Location on Unstructured Overlays
	Resource Location on Distributed Hash Tables
	Discussion

	Resource Monitoring
	Device Monitoring
	Container Monitoring
	Aggregation
	Aggregation techniques
	Monitoring systems
	Discussion

	Resource Management
	Resource Management Taxonomy
	Resource Sharing Systems
	Discussion

	Summary

	Planning
	System Model
	Proposed Solution
	Evaluation
	Scheduling

	Bibliography

