
Pedro Miguel Fortunato Silvestre

Degree in Computer Science and Engineering

Consistent High-Availability for Distributed
Streaming Computations

Dissertation plan submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: João Carlos Antunes Leitão, Assistant Professor,
NOVA University of Lisbon

Co-adviser: Asterios Katsifodimos, Assistant Professor,
Delft University of Technology

February, 2019

Joao Leitao
The work reported in this document was partially supported by
Fundação para a Ciência e Tecnologia through the Project NG-STORAGE (PTDC/CCI-INF/32038/2017)

Abstract

Distributed dataflow computations have emerged in response to the need for pro-

cessing large datasets quickly. Stream processing, a type of distributed dataflow, has

enabled real-time analytics, with low latency and high throughput. A recent trend is

their use for building reactive systems, which require high-availability and additional

processing or delivery guarantees. Previous work has provided high-availability at the

cost of losing consistency in the dataflow graph, due to the inherent nondeterminism

present in dataflow computations. The state-of-the-art approach to fault-tolerance is the

use distributed snapshotting to be able to rollback the dataflow graph to a consistent state.

This approach has two issues. First, recovery is global, coordinated, and slow, meaning

that use-cases requiring high-availability cannot rely on it. Second, in order to provide

exactly-once delivery, the system must wait for a checkpoint to complete before being

allowed to output, increasing latency. In this thesis, the design space of the fault-tolerance

techniques of distributed dataflow systems is explored.

Subsequently, a novel approach for recovering stateful operators using causal logging

is devised, filling an open space in the set of offered approaches. Unused computational

power in the system is used to maintain passive stand-by operators, which can quickly

take over execution of a failed operator. Causal logging is employed to bring that operator

to a consistent state with low overhead. This approach promises to deliver faster recovery

times by recovering only the failed operators. Since it does not require global coordina-

tion, unconnected components will be able to make progress, even under failure. This

approach is configurable, allowing for a trade-off between safety and metadata overhead.

The use of causal logging also reveals new opportunities for dataflow computations, such

as low latency transactionless exactly-once delivery.

A prototype shall be implemented on Apache Flink and evaluated experimentally on

its impact to throughput and latency, under different consistency guarantees and failure

scenarios.

Keywords: stream processing, dataflow, fault-tolerance, exactly-once, causal logging

iii

Resumo

Computações em dataflow distribuído emergiram em resposta à necessidade de pro-

cessar grandes conjuntos de dados rápidamente. Processamento de streams, um tipo de

computação em dataflow distribuído, permite análise de dados em tempo real, com baixa

latência e alto débito. Uma tendência recente é o seu uso para criar sistemas reativos,

que necessitam de alta disponibilidade e adicionais garantias de processamento ou en-

trega. Trabalho prévio implementa alta disponibilidade à custa de consistência no grafo

de computação, devido ao não determinismo inerente em computações de dataflow. A

abordagem à tolerância de falhas do estado-da-arte é o uso de snapshots distribuídas, que

permite reverter o grafo computacional a um estado consistente. Esta abordagem tem dois

problemas. Primeiro, a recuperação é global, coordenada e lenta, portanto casos de uso

necessitando de alta disponibilidade não a podem usar. Segundo, para oferecer garantias

de entrega exactamente-uma-vez, o sistema tem de esperar que um checkpoint complete

para poder entregar resultados, aumentando a latência. Nesta tese, o espaço de desenho

de técnicas de tolerância a falhas para sistemas de dataflow distribuído é explorado.

Subsequentemente, uma nova abordagem para recuperar operadores com estado

usando causal logging é desenhada, preenchendo um espaço em aberto no conjunto de

soluções existentes. Poder computacional em excesso é usado para manter operadores

stand-by, que podem rápidamente assumir o controle da execução de um operador fa-

lhado. Causal logging é usado para trazer um operador a um estado consistente com baixo

custo. Esta abordagem promete recuperação rápida ao recuperar apenas os operadores

falhados. Dado que não requer coordenação global, componentes desconexos continuam

a progredir, mesmo durante falhas. Esta abordagem é configurável, permitindo uma troca

entre segurança e custo de metadados. O uso de causal logging revela novas oportunida-

des, como entrega exactamente-uma-vez de baixa latência sem usar transações.

Um protótipo será implementado no Apache Flink e avaliado no seu impacto ao débito

e latência, sobre diferentes garantias de consistência e cenários de falha.

Palavras-chave: processamento de streams, dataflow, tolerância a falhas, causal logging

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Context . 1

1.2 Objective . 2

1.3 Expected Contributions . 3

1.4 Document Organization . 3

2 Related Work 5

2.1 Message Passing Systems . 5

2.1.1 Events . 6

2.1.2 Virtual time and Digital Clocks . 6

2.1.3 Consistency . 7

2.2 Rollback Recovery . 8

2.2.1 Checkpointing-based approaches 8

2.2.2 Log-based approaches . 11

2.3 Dataflow Systems . 18

2.3.1 Batch Computational Model . 19

2.3.2 Streaming Computational Model 21

2.3.3 High-availability for Distributed Stream Processing 26

2.3.4 Exactly-once delivery . 27

2.3.5 Stream Provenance . 28

2.4 Conclusions . 29

3 Proposed Work 31

3.1 Description . 31

3.1.1 Requirements . 33

3.2 Framework for prototype . 34

3.3 Evaluation of solution . 34

3.4 Scheduling . 34

vii

CONTENTS

Bibliography 37

viii

List of Figures

2.1 Nondeterministic order of arrival. 6

2.2 Inconsistent cut through a system . 8

2.3 Example where uncoordinated leads to domino-effect 9

2.4 Causal logging example . 15

2.5 Checkpointing in streaming implemented using punctuation. 25

3.1 High-level view of the execution of the recovery algorithm. 32

ix

List of Tables

3.1 Scheduling proposed for thesis work. 35

xi

C
h
a
p
t
e
r

1
Introduction

1.1 Context

The recent interest in deriving valuable insights from data has caused enterprises to start

storing massive amounts of data. The Internet of Things movement further increased this,

by turning normal devices into data producing smart devices. The combination of these

factors sparked the development of distributed dataflow systems, such as MapReduce[25]

and later Apache Spark[60]. Classically, these systems are identified by their data-parallel

programming model, where programs are built as flows of data between deterministic

side-effect free operators, which allows these jobs to be expressed as Directed Acyclic

Graphs[35] (DAGs). Two other important factors that led to the popularity of these

systems are their transparent recovery mechanisms, alleviating users from implementing

complex fault-tolerance logic, and also automatic scheduling of tasks with data locality

awareness, leading to high throughput.

The continued increase of data sources means that we are producing more data than

is convenient to store, leading to the appearance of data swamps, enormous pools of raw

data with no use due to lack of organization[18]. This combined with new use-cases

requiring fast data has led to the advent of Stream Processing[24], where analytics can be

performed on streams of data in real-time, thus removing the need to store the data after

deriving the insights. First, stateless systems were developed, but soon after the need for

stateful stream processing became apparent, leading to the success of platforms such as

Apache Flink[21].

The volumes of data being continuously processed keep increasing and to keep up,

deployments have scaled to thousands of nodes and enormous state [19]. However, as

the number of participants in a computation increases, so does the probability that at any

given moment, one of them may fail. Modern approaches to recovery in dataflow systems

1

CHAPTER 1. INTRODUCTION

rely on rolling back the state of the computation to a previous state, sometimes reffered to

as a stop-the-world approach[62], since all participating processes must pause for recovery.

The full graph must be rolled back, because of the nondeterminism present in dataflow

computations, such as message delivery order. In the presence of common failures or

dynamic environments, where operators are moved from node to node this approach

is not able to make progress[62]. This limits their usability in both Edge computing

scenarios as well as popular on-demand “Spot Instances”.

Fast data use-cases, such as online fraud detection, additionally require high avail-

ability in order comply with strict SLAs. Current stream processing systems are unable

to provide both high availability and exactly-once delivery guarantees, while maintaing

their original promise of low latency. On the other hand, interest in the use of stream pro-

cessors to implement arbitrary services as reactive systems has resulted in the implemen-

tation of several prototypes[2, 26, 42, 49]. These systems inherently require exactly-once

processing and delivery, and also high-availability, as latency, and by extension downtime,

translates to a direct loss in revenue[36].

Whether a system offers the capabilities described above is dependent on their ap-

proach to fault-tolerance. Currently, no comprehensive analysis of the design-space of

the fault-tolerance of distributed dataflows exists, meaning users and developers must

independently discover the inherent trade-offs. Perhaps due to this, an alternative has not

yet been explored, causal logging, which may have the answer to the above requirements.

1.2 Objective

This thesis aims to address two conceptual challenges. The first is the careful analysis of

the design-space of fault-tolerance solutions for dataflow computations. This will involve

relating previous research on rollback recovery to the requirements of users of dataflow

systems.

The second is the design of a novel approach to the recovery of stateful operators in

dataflow computations. This approach will be based on the promising concept of causal

logging, as a way to address the issue of nondeterminism. The solution should provide

the following improvements on current solutions:

• Allow for fine-grained recovery of single operators, rather than of the entire com-

putation graph.

• Allow for faster recovery than current approaches, while still guaranteeing consis-

tency.

• Allow for disconnected branches of the computation to make progress and output

independently.

• Achieve minimal overhead during failure-free operation.

2

1.3. EXPECTED CONTRIBUTIONS

• Provide transactionless exactly-once delivery.

To ensure these requirements are met, a prototype will be implemented on a state-of-

the-art streaming system. The approach will then be evaluated on several metrics and

compared to existing solutions.

1.3 Expected Contributions

The main contributions of this thesis are as follows:

• An analysis of the state-of-the-art and the design-space of the fault-tolerance of

dataflow systems.

• The design of a novel approach to fault-tolerance in distributed streaming systems,

ensuring fast fine-grained recovery and exactly-once processing.

• The evaluation of the approach and experimental comparison with modern ap-

proaches to fault-tolerance in distributed dataflow systems.

• The contribution of the produced artifacts to the Open-Source community.

1.4 Document Organization

The remainder of this document is organized thusly:

• Chapter 2 begins with a brief introduction to the message-passing system abstrac-

tion and a review of common distributed systems topics such as virtual time. A lot

of effort is then put into summarizing the literature on rollback-recovery, the main

topic of this thesis. Finally, the state-of-the-art in dataflow systems is presented,

along with some other work on selected topics.

• Chapter 3 starts by describing the desired algorithm and shows how causal logging

naturally fits as an approach to fault-tolerance in dataflow systems. Following, the

requirements of the system are specified and ranked on importance leading to the

scheduling of the work to come.

3

C
h
a
p
t
e
r

2
Related Work

In this chapter, work related to the proposed thesis is reviewed. It begins by reviewing

some preliminaries related to distributed and concurrent systems in Section 2.1. These

preliminaries then allow for the discussion of the class of rollback recovery algorithms

in Section 2.2, to which causal logging belongs. Finally, in Section 2.3 dataflow systems

are presented, and existing systems are examined regarding their fault-tolerance and use

of rollback recovery algorithms. High availability in stream processing is also briefly

addressed. The chapter is concluded with some lessons learned.

2.1 Message Passing Systems

An asynchronous message passing system is a common abstraction in distributed systems

algorithms[23, 29, 43]. In such a system, N processes communicate exclusively through

message passing to achieve some computation. They communicate in an asynchronous
manner, meaning no bounds can be placed on time taken to process or receive a message.

Communication channels are assumed to be reliable and FIFO, as such we do not concern

ourselves with the possibility of message loss or duplication, nor with the possibility of

messages being delivered in the wrong order. Messages are first received, but are processed

in the order they are delivered. Processes fail independently, in a fail-stop fashion, meaning

that they fail silently. They may later recover and rejoin the distributed computation.

Each process has access to a form of stable storage, whose contents survive failures. The

form of stable storage need not be defined, but it may range from a magnetic disk drive

to a highly distributed filesystem. Of course, volatile memory is also present, and access

to it is assumed to be faster than that of stable storage.

Useful systems obligatorily communicate with the outside world, for example storing

records in a database, sending a request to the sprinkler control system to activate, or

5

CHAPTER 2. RELATED WORK

writing to a terminal. We can model the entire outside world as a process, called the

Outside world process, to which messages can also be sent.

2.1.1 Events

The transmission and reception of messages are events in a message passing system.

A process always transmits a message in a deterministic fashion, it always knows it

will send a message. However receiving a message is a nondeterministic event[6, 11],

because a process does not know that it will happen. If two processes send messages

to a third process, these may arrive in any order, which may affect the result of the

computation. This is examplified in Figure 2.1, where P0 and P2 both message P1, however,

these messages may take arbitrarily long to arrive, and thus may arrive in any order.

P0

P1

P2

t1

m1

m2

P0

P1

P2

t1

m2

m1

Figure 2.1: Nondeterministic order of arrival.

2.1.2 Virtual time and Digital Clocks

In order to build distributed protocols it is often very important to be able to order events.

Synchronizing physical clocks in a distributed system is hard[43], so physical timestamps

cannot always be used. Because of this, a notion of logical time needed to be developed.

They were developed from the need to claim that an event preceded another.

Within a single sequential process, it is easy to see if one event happened before

another. However, with a logical notion of time, it would sometimes be impossible to

claim that one event on one process happened before another on another process, or

the other way around. Because of this, the “happened-before” relationship is a partial

ordering[43], denoted→, defined as the smallest relation satisfying:

1. If a and b are two events within a single process, if a comes before b, then a→ b.

2. If a is the event representing sending a message, and b is the event representing

receiving a message, then a→ b.

3. If a→ b and b→ c, then a→ c.

Two events a and b are concurrent if a9 b and b9 a.

6

2.1. MESSAGE PASSING SYSTEMS

Lamport clocks[43] are a method for ordering events in a distributed system, such

that if an event a causally precedes an event b, then the timestamp C(a) is smaller then

the timestamp C(b). Formally, a→ b⇒ C(a) < C(b). To implement them, processes follow

the following protocol:

• Whenever a process i executes an internal event, its clock ticks: Ci := Ci + 1.

• Whenever a process i sends a message to another process, it piggybacks the times-

tamp of the send event, which is its current clock value.

• Whenever a process i receives a message from process j, it combines the timestamp

received tj with its own clock, by taking the maximum of the two: Ci := max(Ci ,Cj)

However, Lamport clocks do not provide the reverse guarantee, C(a) < C(b) ⇒ a → b,

because even though one timestamp may be larger than another, the two events could be

concurrent.

Vector clocks[45] are a generalization of Lamport clocks, which offers this guarantee.

Each process i maintains an n-long vector clock Ci , such that Ci[j] indicates the last event

from j that causally affects i’s current state. To achieve this, processes follow the following

protocol:

• Whenever a process i executes an internal event, its clock ticks: Ci[i] := Ci[i] + 1

• Whenever process i sends a message to another process, it piggybacks its vector

clock.

• Whenever process i receives a message from process j, it combines the vector re-

ceived tj with its own clock, by taking the component-wise maximum: ∀k ∈ 1..n.Ci[k] :=

max(Ci[k], tj [k])

By having each process track the clocks of other processes in its own timestamps, we

can now order events which with Lamport clocks would have been concurrent.

2.1.3 Consistency

A global state in a system such as described is the collection of the states of the individual

processes and their communication channels. This global state is consistent if when the

state of one process reflects the reception of a message, the state of the sender also reflect

sending that message[23, 29]. Essentially, in the global state, a received message must

have been sent, however a sent message may be in-flight, meaning it has been sent and

received, but not yet delivered. The transmission and delivery of messages are events.

A common way to visualize this is with cuts through system state as shown in Fig-

ure 2.2.

In this Figure, state S1 is consistent with S2 even though the sent message has not

been received. However state S0 is not consistent with state S1 because a message which

was received has not yet been sent. Thus as a whole, this cut is not consistent.

7

CHAPTER 2. RELATED WORK

P0

P1

P2

m1

m2

S0

S1

S2

Figure 2.2: Inconsistent cut through a system

2.2 Rollback Recovery

Rollback recovery is a collection of methods to recover a consistent global state of a

message-passing system after the failure of a set of processes. Recovery of consistency

after a failure is achieved by executing a recovery algorithm, which will often roll back

the state of some processes, such that all processes are consistent. However, we cannot

roll back the state of the outside world, as the outside world is a process that does not

participate in recovery. As an example, imagine a fire detection application. Once the

sprinklers have activated, you cannot roll back the fact that this happened. This is known

as the output commit problem. Because of the output commit problem, when a process

sends a message to the outside world, it must make sure that the state from which that is

done is recoverable in the case of failures. Rollback recovery algorithms store information

on stable storage, before output commit, so as to ensure that the state is recoverable.

As a note, most of this section is heavily based on the excellent survey by Elnozahy et

al.[29]. This section begins by introducing checkpointing-based approaches, then goes in

detail on log-based approaches, with special interest in causal logging approaches, as it

is a central component of this work.

2.2.1 Checkpointing-based approaches

Checkpointing approaches[8, 23, 29] have the participating processes occasionally take

checkpoints (or snapshots) of their state to stable storage. A consistent set of checkpoints

makes a global consistent checkpoint. When a process fails, normal execution is paused

and a recovery algorithm is executed. When the failed process recovers, its previous state

is lost, and it can only load one of its available snapshots from stable storage. However,

to resume normal execution the participating processes must be in a consistent state.

The job of the recovery algorithm is to calculate the latest consistent set of checkpoints

available, called a recovery line. To conclude the recovery algorithm, each process will

load their respective checkpoint of the recovery line, and execution resumes.

8

2.2. ROLLBACK RECOVERY

Checkpoints divide the execution of a process into intervals. The j’th checkpoint of

process i is denoted Ci,j . Between two consecutive checkpoints j − 1 and j of process i, an

interval Ii,j is defined.

2.2.1.1 Coordinated or uncoordinated

Distributed checkpointing algorithms can be either coordinated[23] or uncoordinated[8].

Coordinated protocols immediately create a new recovery line by ensuring that processes

take checkpoints at the same logical point in time. Uncoordinated protocols allow pro-

cesses to take checkpoints at any time, and thus must track dependencies between check-

points in order to compute the recovery line. Uncoordinated checkpointing allows each

process to choose the time to checkpoint which is most convenient to it, such as when

its state is smallest. Generally, uncoordinated checkpointing protocols incur overhead

from tracking causal information during normal operation, while coordinated checkpoint-

ing incur coordination overhead, though the coordination overhead has been shown to

be negligible[29]. Thus, coordinated checkpointing algorithms have a simple recovery

algorithm, while uncoordinated algorithms must calculate the recovery line.

Uncoordinated protocols must be designed carefully to avoid the domino effect, which

may happen if no recent recovery line can be computed, due to the fact that there is always

a message reception in a processes checkpoint which has not yet been sent in another

processes checkpoint. This concept is illustrated in Figure 2.3, where due to a failure in P1

the recovery line begins with the three most recent checkpoints C0,3,C1,2,C2,2. because m4

has been received in C0,3, but not sent in C1,2, we must rollback the 0’th process further,

to checkpoint C0,2. This rollback leads to the fact that m3 is now received in C2,2, but not

yet sent in C0,2, so we must rollback the second process to checkpoint C2,1. This process

may continue indefinitely, until we reach the start state of the system.

P0

P1

P2

m3 m4

m2

C0,1 C0,2 C0,3

C1,1 C1,2

C2,1 C2,2

m1

Figure 2.3: Example where uncoordinated leads to domino-effect

Several variations on uncoordinated checkpointing have been developed, which aim

to avoid the domino effect, such as communication induced checkpointing and model-

based communication induced checkpointing[8]. These protocols piggyback even more

9

CHAPTER 2. RELATED WORK

information on their messages, which is used to decide when to force checkpoints to avoid

heavy rollback.

2.2.1.2 Blocking or non-blocking

In coordinated checkpointing, one must ensure that the individual checkpoints happen

in a consistent point in time. To be explicit, for a message m sent from i to j, if Cj,k reflects

the event receive(m), then Ci,k must reflect send(m).

A simple checkpointing protocol[51] may behave like a two phase commit proto-

col[16], where an initiator first takes a checkpoint and then sends a checkpoint request

to all other processes. When processes receive this request, they perform their own

checkpoints (including the state of their channels), and acknowledge the initiator of their

success or failure in performing the checkpoint. The initiator can then decide whether

the global checkpoint is valid or should be discarded. When processes are informed of

the decision they may resume processing. This is a blocking algorithm, because during

the execution of the checkpoint, processes stop their computation.

The alternative are non-blocking algorithms, such as Chandy-Lamport’s distributed

snapshot algorithm[23]. This algorithm builds on the assumption that FIFO channels

will order the checkpoint markers with the application messages. The initiator begins

by taking a checkpoint of its state and then sending a marker along each of its channels.

Upon receiving the first marker on a given channel, a process checkpoints its state and

marks the state of that channel as empty. The process also sends a marker on each of its

outgoing channels. It then records incoming messages on other input channels, up to the

point where the markers arrive. The result is a consistent global checkpoint, including

the state of the individual processes and their channels.

2.2.1.3 Synchronous or asynchronous

Blocking and non-blocking checkpointing is distinguished from synchronous checkpointing
and asynchronous checkpointing. Asynchronous checkpointing happens when the act of

flushing the state to stable storage is not on the critical path of the system, such as when

it is done by a separate thread. This can be achieved by taking an in-memory copy of the

state, and spawning a thread to asynchronously flush it the copy, while simultaneously

working with the original data.

2.2.1.4 Incremental checkpointing

In order to further reduce the overhead of checkpointing the state of an application,

certain systems choose to provide incremental checkpointing[19, 29]. With this feature

the changes performed to state since the last checkpoint are collected and act as the next

checkpoint. An incremental checkpoint is the difference between the current state and

the previous checkpoint. This works best in an application with very large state, but

comparatively low amounts of modifications to it. A compaction algorithm must be run

10

2.2. ROLLBACK RECOVERY

occasionally to combine several incremental checkpoints into a full checkpoint. This

reduces memory consumption and eases searches.

2.2.2 Log-based approaches

A process’s lifetime can be seen as a sequence of intervals separated by nondeterministic

events. Inside a state interval, a process evolves independently and deterministically.

Sending a message from one process to another then creates a new state interval for the

receiving process. The senders state interval is then causally linked with the receivers

new state interval. Note that, for any given execution, if all nondeterministic events of

a process were replayed in the same order and at the same points in the execution, then

the execution inside the intervals would also be the same, as it is deterministic.

Log-based rollback approaches replay the nondeterministic events generated pre-

failure in order to recover the failed processes to a consistent state with the remaining

system. In some cases this may completely avoid rolling back the state of other processes.

Log-based approaches can be combined with checkpointing approaches to allow limiting

the size of the produced log, as one may delete the log entries older than the checkpoint.

These approaches rely on the Piecewise Deterministic Assumption (PWD assumption)[29].

This assumption states that all nondeterministic events can be identified and their de-

terminants logged. To reproduce a nondeterministic event e, one must store the event

and its determinant, represented as #e, which is a piece of data that removes the nondeter-

minism of an event. As an example, suppose the event is generating a random number,

the determinant of that event is the number generated. If the nondeterministic event is

receiving a message, then the determinant is the order of delivery. In other work from the

same authors[7], the PWD assumption is stated differently as “The only source of nondeter-
minism is the order of delivery of messages”. This other definition is fundamentally different

as in most realistic use-cases other forms of nondeterminism are needed. In this thesis,

we refer to this other assumption as Ordered-Delivery Deterministic Assumption or ODD

assumption. This name is chosen because if the order of delivery was fixed, the system

would be deterministic.

Thus, if a process re-executes the same nondeterministic events, in the same order,

it will evolve to the same state as before failure. If all determinants are available, other

processes need not be rolled back, as the failed process will reach its pre-failure state.

2.2.2.1 Orphan Processes

An orphan process is defined as a process whose state depends on a nondeterministic

event that cannot be reproduced during recovery[29]. If a nondeterministic event cannot

be reproduced, then the state of all processes must be rolled back to before that event, in

order to provide consistency.

11

CHAPTER 2. RELATED WORK

The always-no-orphans property[6], is used to reason about the effects of a nondeter-

ministic event e:

∀e : �(¬Stable(e) =⇒ Depend(e) ⊆ Log(e)) (2.1)

Where Depend(e) is the set of processes whose state was affected by e, meaning any

process that executed e or has since received a message from the process that executed

it. Log(e) is the set of processes that have logged e’s determinant in volatile memory

and Stable(e) is a predicate which becomes true when e’s determinant is logged in stable

storage. Finally, the operator � is the temporal always operator. It is thus apparent that

this is a safety property of the system.

This condition states that to ensure no orphaned processes at all points in the execu-

tion of our distributed computation, for every nondeterministic event e that a process

executes, if its determinant is not yet in stable storage, then all processes whose state

depends on event e must have logged its determinant in volatile memory.

2.2.2.2 Pessimistic logging

Pessimistic logging protocols[29], such as in the write-ahead logs of database literature

[16], implement a stronger property than the always-no-orphans property[6]:

∀e : �(¬Stable(e) =⇒ |Depend(e)| ≤ 1) (2.2)

Essentially, for a process to be able to send a message to another process, it must first

ensure that all determinants are stable. The cost of accessing stable storage is often pro-

hibitively high, however these protocols come with several attractive advantages. First,

any process may send messages to the outside world without coordination. Second, any

state in which the system is observed is recoverable. Rollback of other processes is unnec-

essary and recovery is simple. However, in general, failure-free execution has very high

overhead.

2.2.2.3 Optimistic logging

Optimistic logging protocols[29, 50] have the lowest overhead during failure-free opera-

tion. They achieve this by allowing for the temporary creation of orphans, but guarantee-

ing that by the time recovery is finished, no orphans will exist. Thus they do not ensure

the always-no-orphans property. The property they provide is shown in 2.3[6], where F

is the set of processes assumed to fail concurrently during execution and � is the temporal

eventually operator:

∀e : �(¬Stable(e) =⇒ (Log(e) ⊆F =⇒ �(Depend(e) ⊆F))) (2.3)

This property states that if a determinant is not stable, then if all the processes which

have logged it fail, then eventually only the processes which have failed will depend on it.

This essentially means that after a failure, eventually there will be no orphans, because

12

2.2. ROLLBACK RECOVERY

processes will roll-back until their state does not depend on a lost determinant. These

protocols are implemented by occasionally logging their determinants to stable storage,

often asynchronously. During failure-free operation they must track causal dependencies

between process’s state intervals, such that during recovery, a consistent state may be

achieved. Though they have low failure-free overhead, optimistic protocols come at the

cost of slow output commit, which requires a lot of coordination and complex recovery.

2.2.2.4 Causal logging

Causal logging[11, 28] attempts to get the best of both worlds, with low overhead, the

ability for each process to independently commit output to the outside world and ensur-

ing the always-no-orphans property, while also removing access to stable storage from

the critical path, except when committing to the outside world.

While pessimistic logging ensures no orphans by ensuring the antecedent of property

2.1 is true, causal logging focuses on ensuring the consequent. That is, causal logging

ensures that all processes that depend on an event have logged its determinant. If a set of

processes Ffails, then for all events e either Depend(e) ⊆ Log(e) ⊆F, in which case there

is no orphans, or Depend(e) ⊆ Log(e) * F in which case at least one surviving process

has the determinant of e, and can share it with the recovering processes. In order for a

process to message the outside world, it must ensure that the determinants it depends on

are stable, however this can be done with no coordination.

These protocols can be made optimal by ensuring that no unnecessary determinants

are sent to processes that do not depend on them. This is done by strengthening the

always-no-orphans property, as shown in property 2.4:

∀e : �(¬Stable(e) =⇒ ((Depend(e) ⊆ Log(e)∧�(Depend(e) = Log(e))))) (2.4)

This can be interpreted to mean, while e is not stable, all dependent processes must

have logged it, and eventually the ones who have logged it will be exactly those who

depend on it and no more.

However, processes only depend on events of other processes if they receive applica-

tion messages from those processes, because those events happened-before the delivery

of the message. It should thus be evident that there is no need to send extra messages

containing determinants, since the determinants a process needs can be piggybacked on

the message that makes it causally dependent on those determinants.

Finally, if the number of possible concurrent failures is bound to not be greater than f,

it is possible to implement stable storage while avoiding disk access by logging to f + 1

processes. This property is shown in 2.5

∀e : �((|Log(e)| ≤ f) =⇒ ((Depend(e) ⊆ Log(e)∧�(Depend(e) = Log(e))))) (2.5)

13

CHAPTER 2. RELATED WORK

Of course, in this case, one process may avoid sending its determinants to processes

which have not logged them if enough processes have already logged them, such that they

are now considered stable.

In the following, a general protocol for causal logging is described from the perspec-

tive of process p. Process p maintains a determinant log L, which is a mapping from

processes to the determinants of the events on which the state of p depends. Processes

maintain additional data-structures where they record which determinants are stable and

have been received by which processes. Additionally, processes piggyback determinants

on application messages, sending the determinants they believe the receiving process to

not yet possess.

1. When a process receives a message m, before delivery, for all determinants piggy-

backed on m, which originate in process q, p appends to L[q] those determinants.

2. When a process delivers m, it records in L[p] the delivery sequence number.

3. During the processing of m, more determinants may be generated (random num-

bers, timestamps), which are appended to L[p].

4. Whenever p wishes to send a message to a process q, it will consult its log and

data-structures, to compute the set of determinants that q should receive. These are

piggybacked on the message sent.

Two special cases of optimal causal message logging protocols exist. Family-Based
Logging[9] is the special case where f = 1. The name comes from the fact that since

at most one process can fail at any time, it is sufficient to log the determinants in the

direct children of a process, which are the processes to which a process sends messages.

The processes from which a process receives messages are its parents. These have the

responsibility of performing sender-based message logging[40], such that messages may be

replayed during recovery.

The other special case is when f = N , which is the protocol that Manetho[27, 28] im-

plements. Manetho, like most other work in the area of causal logging, works on the ODD

assumption, that is, the only source of nondeterminism is order. Since all processes may

fail, determinants must be completely shared, which can be done by tracking message

deliveries only. Manetho does this with the antecedence graph, an efficient datastructure

that tracks the state intervals of processes. Manetho also uses checkpointing to be able to

truncate the antecedence graph. Checkpoints are uncoordinated and include the in-flight

messages, the antecedence graph and the state of the application. In [28], it is shown that

causal logging has low failure free overhead experimentally.

Intuitively, this approach recovers failed operator o, by having it send the non-stable

determinants it has generated piggybacked on every message it sends. This means that

other processes, if causally affected by o, will know how to guide its recovery. They can

14

2.2. ROLLBACK RECOVERY

share with it, for example, the order in which o previously received messages, such that

it can reach the same state as before.

Causal logging protocols track the causal dependencies between state intervals of

processes. Each process logs the determinant of every non-stable event that causally

affects it. Thus, each process maintains a determinant log, which acts as an insurance

against failures of other processes. In Figure 2.4, an example is shown, combined with

uncoordinated checkpointing. When a process takes a checkpoint, determinants it had

previously logged become stable. This is why P0 does not have #m2 in its log, since

P2 has logged it in stable storage. P2 took a checkpoint so it could send a message to

the Outside-World Process, this was done without coordination. As an example, if P2

failed, P2’ would recover from its checkpoint. P2’ than requests and receives the replay

of messages sent since its last checkpoint. At this point, P1 can guide its recovery, because

it knows that m5 was delivered before m6.

P0

P1

P2

m1

S0

S1

S2m2 m3

m4

m5 m6

Determinant	Log

#m3,	#m4,	#m5

#m5,	#m6,	#m7

mowp

m7

#m5,	#m6,	#m7

Figure 2.4: Causal logging example

Other ways in which causal logging protocols may vary are the way in which they track

the number of processes that may have logged a given determinant. This is addressed in

the following section.

2.2.2.5 Trade-offs in membership tracking

Whenever a distributed system follows the ODD assumption, which is that the only

source of nondeterminism is message delivery order, the determinant of a message m,

denoted #m, can be captured by the tuple < m.src,m.ssn,m.dest,m.dsn >. Src and dest

are respectively the sender and receiver of the message, while ssn and rsn are the send

sequence number and the delivery sequence number. This is of course assuming that

the sender remembers the messages sent. These sequence numbers then allow a process

to request replay from another process, starting at a given send sequence number. The

deliver sequence number says the order of delivery, required for delivering in the same

order.

In order to avoid redundantly sharing unnecessary determinants, processes may share

15

CHAPTER 2. RELATED WORK

some metadata regarding who knows about what determinants. This would allow pro-

cesses to eventually stop sending determinants to processes that have already received

them. But often, the amount of data to be sent is large, and to reduce the amount of

determinants sent, more metadata must be sent. In [10], the authors explore this exact

trade-off, presenting six causal logging protocols which share different amounts of data,

under the ODD assumption:

•
∏

det: A process p tracks who has received which determinants from itself only. If

they have not yet received them, then they are piggybacked on the next message.

No aditional metadata is sent.

•
∏
|log |: A process p tracks the number of processes that have logged which determi-

nants. When process p receives a determinant of a message m sent by process m.src

to process m.dest, and p is neither of those processes, then p knows that |log(m)| ≥ 3.

A process which receives this metadata from p then knows that |log(m)| ≥ 4. When

|log(m)| > f , processes stop sending the determinant.

•
∏

log : A process p tracks the identifiers of the processes that have received a given

determinant. This way, a process will never send a determinant to a process it

knows has already received it once. When receiving a determinant, the union of

the two sets of identifiers is taken. When |log(m)| > f , processes stop sending the

determinant.

Additionally, versions of the above protocols are specified, which additionally inform

other processes of changes in the stability of storage of a determinant:

•
∏+

det: Additionally, informs other processes of which determinants have become

stable from its perspective.

•
∏+
|log |: Additionally, informs other processes it had already told about the determi-

nant of m of changes in |log(m)|.

•
∏+

log : Additionally, informs other processes it had already told about the determi-

nant of m of changes in log(m).

While
∏

Det would piggyback much less information on each message, it runs the

risk of sending determinants to processes that have already received them. Additionally,

for f > 3 this protocol is not able to recognize that a determinant is stable, it must be

explicitly informed. This is because, since no metadata is sent, a process receiving #m,

can only assume that the holders of #m are itself, and m.src. On the other hand,
∏+

Log will

rarely send redundant determinants, and will know a determinant is stable as soon as

possible, but will piggyback a lot of metadata in order to achieve this. In general however,∏
Det is a good choice for f < 3, since only determinants need to be sent, and processes

are able to recognize that they are stable.

16

2.2. ROLLBACK RECOVERY

Another good use-case is shown for when the channel graph, the graph of commu-

nication channels, is acyclic and shortcut-free. Then
∏

Det is as efficient as
∏+

Log , when

f = N . If the channel graph is additionally a tree (meaning it is acyclic, shortcut-free and

each node has only one parent, except for the root) then this is true for f ≤ n.

In order to efficiently propagate the information of the protocols, a dependency vector

may be used, first introduced in [50]. First note that in a piecewise deterministic system,

|Depend(e)| may be used to estimate |Log(e)|, since Depend(e) ⊆ Log(e). Additionally,

remember that processes are assumed to be deterministic, except in the order of delivery

of messages. This means that each state interval is started by a deliver event. In [7], the

approach is explained in detail, we urge the interested reader to refer to it, as it is heavily

condensed here. By having each process i maintain a vector clock, called a dependency

vector DVi , which increments only on deliver events, it is possible to know which events

causally precede a certain event e. For two messages m and m’, delivered to processes p

and q respectively, the following holds, because the DV are vector clocks:

deliverp(m)→ deliverq(m′) ≡DVp(deliverp(m))[p] ≤DVq(deliverq(m′))[p] (2.6)

This means that DVp(deliverp(m))[q] is the index of the latest state interval of q which

affects p. To know whether a process depends on a determinant, one can use the following

implication: DVq[m.dest] ≥m.dsn⇒ q ∈Depend(m).

To track dependencies between processes, each process maintains a N ∗ N matrix

called DMat. Process p maintains in row p its dependency vector, and in all other rows,

its estimate of the other processes dependency vectors. To keep it up to date, whenever

process p receives a message m (with attached metadata) from q, it executes an update

rule, different for each protocol.

As an example, to implement
∏

det, the metadata sent, which efficiently encodes all

determinants, is simply an N long vector named PBC(m), where PBC(m)[p] is the maxi-

mum m.dsn for all determinants #m piggybacked in the message, where m.dest = p. To

update it, p first increments DMat[p,p], then sets DMat’s p’th row to the component-wise

maximum of itself and v, and does the same for the q’th row and v. Finally, it updates

the diagonal of the matrix to the maximum of itself and the corresponding entry in v.

To implement
∏+

log , the full DMat matrix is piggybacked on each message sent from

q to p. When p receives the message m it first increases DMat[p,p], then takes the

component-wise of the two matrixes DMatp and DMatq.

A process p may estimate the size of Log(m) by counting the number of processes q

such that DMat[q,m.dest] ≥ m.dsn. More intuitively, by looking at the m.dest column

and counting the entries equal to or above the original receive sequence number of the

message, which is also the state interval initiated. When this value is above f, process p

may consider m to be stable.

17

CHAPTER 2. RELATED WORK

2.3 Dataflow Systems

Dataflow programs structure their processing as flows of data between a directed acyclic

graph (DAG) of operators[5, 14, 35]. Each of these operators applies a transformation to

a collection of data items. Structuring programs this way allows for easier use of several

forms of parallelism, as will be discussed later.

In this work we are particularly interested in distributed dataflow systems, which

execute dataflow programs, due to their scalability and fault-tolerance. Two other impor-

tant components that led to the popularity of these systems is that they generally offer

transparent recovery mechanisms, alleviating users from implementing complex fault-

tolerance logic, and also automatically schedule tasks with data locality awareness[38,

60]. For example, the success of MapReduce came not from being the first system to dis-

tribute computation, but from providing a system in which Map and Reduce functions

could be written as if they would execute locally.

From dataflow systems two categories are highlighted: batch processing systems,

which operate on bounded collections of data, that is data which is finite and fully present

such as a file or database table. Stream processing systems, on the other hand, operate on

unbounded collections of data, called streams, which are continuously arriving and must

be processed online.

Dataflow computations, especially streaming ones, may be viewed as message-passing

systems, which allows us to pull from the rich literature on rollback recovery. To keep dis-

cussion clear, nodes and messages will refer to message passing systems, while operators

and records will refer to dataflow computations.

Importantly, dataflow systems must somehow receive data from an external system,

and put results into an external system, both of which can be represented by the outside

world process. The place where data is received from is called a data source, which should

not be confused with a source operator, the operator from which records appear in the

graph. Similarly, the place where data is put after processing is a data sink, which also

has a corresponding sink operator. These may often be a database, message queue or even

highly distributed filesystem.

Consistency guarantees are an important feature of dataflow systems, as they affect

latency, throughput and are generally desired by users. These guarantees refer to how

many times a record is counted in some way, the possibilities being at-most-once, at-least-

once and exactly-once. Two types of semantics are important when discussing dataflow

systems:

• Processing semantics: The guarantees offered by the system as to how many times

the input records will affect the internal state of the system [19]. At-least-once

processing semantics means that each input record will be processed (and thus

affect internal state) at least once by each vertex in the computation graph.

• Delivery semantics: Often also called end-to-end processing semantics, these are

18

2.3. DATAFLOW SYSTEMS

the guarantees given across the internal system and its connections with the outside

world process. Exactly-once delivery would mean that each record is fetched once

from the outside world data source, and sent once to the outside world data sink.

Delivery semantics can only ever be as strong as the processing semantics.

Before diving into the central topic of this work, streaming systems, batch systems

are first reviewed.

2.3.1 Batch Computational Model

Batch dataflow systems specify computations on a bounded static dataset. These com-

putations are specified in terms of a DAG of operations to be performed on the dataset.

The operators are specified as functions which operate on a single input record, while

records are partitioned equally among participating vertexes of any given stage. There

are some implicit input operators which are in charge of injecting data into the DAG.

Connections between operators express data dependencies. Each operator in the DAG

may only begin processing once all upstream operators have finished processing. Since

these systems are generally meant to process extremely large datasets, these datasets are

generally already partitioned and replicated in a distributed file system. Batch Systems

generally take advantage of this by scheduling computation on the nodes which have the

data that needs to be processed. One final common property of these systems is the use

of lineage to recover from failures.

2.3.1.1 Lineage Recovery

Another form of recovery mechanism, very common in batch dataflow systems, which is

not a rollback-recovery mechanism is lineage-based recovery. Lineage based approaches[55,

59] differ from rollback-recovery approaches in that they only apply to dataflow systems

with large coarse-grained computations or tasks which are applied to partitions of data,

and not to general message passing systems. The output of each coarse grained transfor-

mation on the input is stored in distributed stable storage. Lineage reconstruction is used

to reconstitute the state of a distributed computation by storing the coarse grained opera-

tions performed on the previous state or dataset. This creates a lineage graph, which may

be partitioned. To reconstitute partitions after a failure, one may simply apply the same

transformations to the input set. Several systems implement this kind of recovery for its

low runtime overhead and simple implementation, such as MapReduce[25], Spark[60]

and Ray[46], all described below.

2.3.1.2 Existing Batch Systems

MapReduce[25] was the first marjorly popular instance of this concept. It allowed a

computation to be specified in terms of a Map and a Reduce operation, with an implicit

shuffle of data in between. Mappers acted as input vertexes, reading data from Google

19

CHAPTER 2. RELATED WORK

File System[31], while reducers acted as outputs, writing to it. Intermediate results would

be written to disk. Depending on the task, the reduces may be dependent on all maps,

meaning a single “straggler” map may slow down the entire computation. Both stragglers

and failed tasks are dealt with by rescheduling. Later Hadoop, an open-source implemen-

tation of MapReduce, became massively popular. Hadoop replaced GFS with the Hadoop

Distributed File System[48] (HDFS), a scalable distributed file system. MapReduce as

framework was inflexible, allowing only one stage of Map and Reduce operations. As

requirements became more diverse, users began chaining several jobs to achieve more

complex behaviour. Eventually this led to the appearance of frameworks such as Hive[52]

and Pig[47], which allowed queries to be expressed in higher level, more expressive lan-

guages. Nonetheless, intermediate stages of these chained computations were inefficient,

as they had to fully complete before starting the next, while also writing every intermedi-

ate result to HDFS.

Dryad[38], a research system from Microsoft, provided a much more expressive com-

putational model than Hadoop. Any computational DAG can be expressed, with vir-

tual input and output operators. Any function may be executed by a vertex, though

to provide fault-tolerance functions should be deterministic. Vertexes are rerun when

failures happen. Importantly, if the inputs to a vertex disappear, then recursively the

upstream vertexes are rerun, in which case vertex functions must be kept deterministic to

avoid rerunning siblings which may have already completed. Again, though not explicit,

this is essentially an implementation of lineage recovery. Similarly to MapReduce, it

takes advantage of data locality and a distributed file system. The edges between ver-

texes represent channels, whose type must also be specified, such as TCP, UNIX pipes or

shared memory. This flexibility is also a source of complexity, and perhaps due to that

DryadLINQ[30] was later developed, which allowed queries in a SQL-like language to be

compiled into Dryad flows. Also like MapReduce, a vertex must wait for all its inputs to

be ready before beginning computation. This means that it takes as long as the slowest

input to start. Dryad automatically detects slow vertexes and schedules new copies to

compensate. Due to its closed-source nature, Dryad never grew much in popularity.

The massively popular Spark[60] appeared a few years later, borrowing many ideas

from Dryad, however building them on the open-source HDFS. One important contribu-

tion that Spark made was introducing the resilient distributed dataset. This abstraction

allows users to write dataflow programs as simple sequential programs, while also pro-

viding fault-tolerance through automatic lineage tracking and recovery[59]. Another

important factor for the popularity of this system was the ability to perform in-memory

data-mining[60].

20

2.3. DATAFLOW SYSTEMS

2.3.2 Streaming Computational Model

Streaming dataflow systems also express their computations as a DAG of operators, but

since data is unbounded, it must be continuously processed. Thus in a streaming compu-

tation, all operators in the DAG are concurrently processing. This means that while batch

processing exploits task and data parallelism, streaming additionally exploits pipeline

parallelism. Operators process records one by one, receiving them from input streams

and outputting them into an output stream. The operators used are like those of relational

algebra though recently user-defined functions have become popular.

To discuss the existing systems, we use and extend the taxonomy used in [14]:

• The job is described as a DAG of operators, which is translated into a logical plan.

This logical plan is later translated into a physical plan, by specifying the parallelism

of each operator, or allowing the system to choose one.

• Regarding selectivity, operators may be selective, one-to-one or prolific, where they

respectively produce less, equal or more records than they consume.

• The operators may be stateless, when they do not maintain state between executions,

or stateful if they do.

• The processing model may be by-record, where an operator is applied to a record at

a time, or micro-batch, when a small batch is passed between operators.

• Operators may be deterministic, when they apply a deterministic function over their

inputs, or nondeterministic.

• The source operator may be pull-based or push-based, depending on whether it pulls

data from the outside world or if the outside world pushes data to it.

2.3.2.1 Streaming Concepts

Streaming brought with it a new set of operations and concepts which are still being

refined to this day. One of these concepts is windowing. Windows are operations which

execute on a finite set of records of a stream. These may apply any function over this set

though commonly they are used for aggregates. Additionally, the set of records is also

contiguous based on some notion of time. Windows have two properties, size and slide.

Size defines how large the window is in units of the notion of time and slide defines by

how much the window should advance in that notion, after each triggering.

Three notions of time are common:

• Processing-time: the physical timestamp at which the record is being processed in

this execution.

21

CHAPTER 2. RELATED WORK

• Ingestion-time: the time at which the record was ingested by the system. Since

records may be created from processing other records, often their timestamps are

combined either by taking the maximum or the minimum.

• Event-time: the time at which the record was produced at the event generator.

Event-time is very popular but raises the issue of out-of-order processing and lateness.

For example, a user of a mobile game plays while disconnected. When he reconnects to the

network, old events are sent to the streaming engine, late. To deal with this watermarks[3]

have been proposed, which allow event time to advance by injecting a punctuation which

asserts the current time in event-time. To read more on windowing and watermarks

please refer to the excellent paper [5].

A streaming punctuation[54] is an element embedded into a stream which contains

a predicate. Its presence at a point in the stream states that no following records will

match the predicate. This has several uses, such as for watermarks or checkpointing, as

we will see later. For use in watermarks, the predicate simply states that the event-time

of following records will be above some number. This allows windowing operators based

on event-time to fire windows whose size exceeds that time, and thus have bounded state.

It is very important to highlight that certain streaming operations are inherently

stateful. Operations like streaming joins, windows and aggregations must maintain state

between executions. These are also some of the most useful operations to have in a

streaming framework. Their stateful nature is what makes providing high-availability

with strong processing semantics incredibly hard. On the other hand, processing time

windows are inherently nondeterministic, as their execution depends on the physical

clock. If the execution of a processing time window was repeated, even with the same

order of delivery, differences in delivery time may lead to different results.

2.3.2.2 Existing Streaming Systems

Arguably, the first Data Stream Management System was Aurora[22], which needed no

specialized fault-tolerance as it was a single-node system. Later, Aurora* extended this

work to provide distributed stream processing. Its input operators recorded records

which arrived at them in a stable fashion, which is important to provide at-least-once

processing since data sources would push data to it. Operators are distributed across

nodes in a sensible manner, meaning continuous chains of operators are assigned to the

same node. To simplify, assume each node gets one operator. To provide fault-tolerance,

Aurora* used upstream backup[24] which to support f failures of nodes, would backup

in-flight records of a node o on k upstream nodes. These messages were maintained

by the backups until nodes downstream from o have fully processed these messages.

When a failure is detected, an upstream node from operator o takes over the execution

of operator o. Load-sharing techniques can then be applied to offload work from the

node which is now running o. Importantly, operators also track which past records they

22

2.3. DATAFLOW SYSTEMS

depend on using a sequence number. The earliest record that an operator depends on

is also communicated to its backups, so they may truncate their backup log. Note that

stateful operators may depend on all records ever processed. Thus, this very early system

provides high-availability with exactly-once processing at the cost of high synchronous

communication and memory overhead with the upstream servers, however this scheme

only works for line DAGs, that is computations that may be expressed as a line of opera-

tors. This is because, as shown in Section 2.1.1, order of arrival is nondeterministic. It is

also important to note that only deterministic operators are supported, given that input

messages must be replayed in the case of failures.

Borealis[1], a successor to Aurora*, provided high-availability by having replicas of

each operator running simultaneously. The ODD assumption was followed, meaning

operators were deterministic and that the only source of nondeterminism is the order

of delivery of records. In order to make deterministic the order of delivery, an operator,

named SUnion, is inserted into the graph where necessary. This operator takes multiple

input streams and produces one deterministically ordered output stream. However, to

ensure consistency through all replicas of SUnion, records must be buffered, increasing

the latency. In the case of a failure of an operator o, operators downstream from o will

search for a substitute replica. If found, they will proceed normally from the point

at which o’s operation stopped. If not found, then the user has the choice of pausing

processing or continuing with partial input. Partial input leads to tentative records, which

may later be revised. Whatever the users choice, the state of the failed operator and other

downstream operators must be reconciled after recovering from the failure. Two methods

of state reconciliation are described in [15], checkpointing and undo. Checkpointing

works as expected, the graph is reset to a checkpoint and input replayed until the operator

is up-to-date. The undo method involves taking the tentative records that the operator

has created and undoing their effects, followed by recalculating the records with full

inputs. This approach only affects the paths starting at the failed operator, and as such

is finer-grained. If one ignores tentative records, then Borealis can be said to provide

exactly-once processing semantics, though at the cost of having several passive replicas

and increased latency from the SUnion operators.

D-Streams[61] is a streaming model implemented in Spark Streaming, where input

records are bucketed into RDDs, called micro-batches. Stateful operators are supported,

but are turned into stateless functions that accept a previous state as input. The output

of one of these operators is both the original output and the current state. Both of these

are also represented as RDDs. As explained before, RDDs provide transparent lineage

recovery, meaning that fault-tolerance is immediately provided by this system. To prevent

recomputing an operator’s state from the start, periodic asynchronous checkpoints of the

state RDDs are taken, which may then be used to bound lineage recovery. Due to its

micro-batching nature, D-Streams incurs some overhead from the batching process, and

latency is always at least as large as the micro-batch period. This also translates to all

operators, which block while processing an input RDD. Thus the records in the output

23

CHAPTER 2. RELATED WORK

RDD are all outputted at once, and the next operator cannot start processing them earlier.

In [41], Spark Streaming is shown to perform and scale well in general, though often

performing worse than modern purpose built stream-processors such as Flink. Again,

D-Streams provides exactly-once processing but requires operators to be deterministic.

MillWheel[4] is a general purpose stream processing system, which popularized

many concepts known today such as watermarks and assuming out-of-order streams. It

also offered exactly-once delivery semantics, though this was only achievable through the

use of specialized databases and hardware. Because of the high-speed networks Google

has at their disposal, it is viable to execute a transaction every time a record is processed,

which atomically commits changes to operator state and output records. This atomic-

ity allows for operators to be nondeterministic. Another interesting mechanism used in

MillWheel is their method for identifying duplicate ingestion. Each record is attributed

a unique identifier and a bloom filter[17] to provide fast membership lookups. This of

course has the drawback of being probabilistic, though it can be shown to fail incred-

ibly rarely. MillWheel’s approach is not suitable for good performance on commodity

hardware, as it requires specialized databases with highly synchronized clocks.

Storm[53] was another general purpose stream processor. While it did not support

stateful operators, source operators still checkpointed their offset of the data source. At-

least-once processing is achieved through a unique mechanism: each record, even those

created by operators, receives a 64-bit identifier. A special operator is placed in the

query graph, connected to all operators, called the “acker”. It tracks the lineage of record

generation using an XOR checksum: when a source operator first retrieves a record, it

sends that identifier to the acker operator, who creates a map entry from that input record

identifier to the checksum. The checksum is initialized as the bitwise XOR of the record

identifiers generated at the source. Every time an operator processes a record, which

may generate new records, it applies the bitwise XOR to the result record identifiers, and

sends that, along with the original record identifier, to be XOR’ed with the checksum,

after which the input record is acked and is XOR’ed with the checksum for the second

time. When the checksum becomes 0, this implies that the original record has been fully

processed. If it does not become zero, a timer will expire, considering the record failed,

which will cause it to be retried.

Flink[21] combines stream and batch processing in one system, though in this work

we will treat it as a stream processor alone. It has gained popularity due to its expres-

siveness, performance and configurable guarantees[41]. It is capable of exactly-once

processing when combined with a replayable data source such as a Kafka, as explained

in Section 2.3.4. Consistent checkpointing is achieved through the use of a modified

Chandy-Lamport[19, 23] distributed snapshot algorithm. A coordinator injects punctu-

ations into the streaming graph sources, which divide the records into epochs. When an

operator receives this marker on a channel, that channel is blocked, while others keep

processing. When received on all input channels it causes the operator to take a local

snapshot. The marker is then sent downstream on all channels. Sources checkpoint their

24

2.3. DATAFLOW SYSTEMS

offset in the data sources. Figure 2.3.2.2 represents this checkpointing algorithm. Note

that there is no need to record the state of the channels. Additionally, in Flink these

snapshots of local state are done asynchronously, by performing an in-memory copy of

the operator state, which is then asynchronously flushed to stable storage[20]. Finally,

incremental checkpoints are also possible.

operator
a

operator
b

Epoch
n

Epoch
n+1

Epoch
n+2

Epoch
n+2

Epoch
n+2

Figure 2.5: Checkpointing in streaming implemented using punctuation.

Streaming systems have been converging on this approach to fault-tolerance, as through

the use of punctuation, one can achieve low latency and coordination. Flink was not

the first to use this approach, though it did improve on earlier attempts, such as IBM

Streams [39] which uses an unnecessary draining phase for in-flight records.

More recent systems have recognized the value of causal logging and have begun

applying it. Noria[32] is a web application backend, serving the purpose of a database

which automatically maintains the state of materialized views, accelerating reads. The

maintenance is achieved through the use of a streaming dataflow graph which calculates

and propagates changes to the materialized views. It is also efficient, acting like a cache

that maintains only popular values of those materialized views. Other values are dis-

carded and recomputed if requested, through the use of an upquery, a query going from

the materialized view to the base tables. This is what is understood by Noria’s partially-

stateful dataflow model. Noria’s original implementation did not concern itself with

fault-tolerance, meaning that the materialized views would be recomputed in the case of

failures, from the requests. In[58], Noria is extended with a unique form of causal logging,

providing it with the ability to recover a single node while maintaining its materialized

views intact. Noria achieves this through the use of tree-clocks, an elegant datastructure

that tracks the provenance of records throughout the dataflow graph. In a sense, these are

like vector clocks, for dataflows. By associating a tree-clock with each message delivered,

operators can track the order in which all messages in the system were delivered. This

25

CHAPTER 2. RELATED WORK

information is efficiently shared with downstream operators by sending only the relevant

parts of the tree-clock, the neighbourhood. As explained, in Section 2.2.2.4, downstream

operators can then guide the recovery of failed upstream operators.

However, this implementation presents a few limitations. First, in Noria’s case, only

stateless deterministic operators are supported. This is because stateful streaming op-

erators, like windowed aggregations, introduce other forms of nondeterminism, which

tree-clocks cannot handle. The same goes for any nondeterminism that an operator could

hold. Second, only one concurrent failure is supported, and no more than one successive

failure is supported. It also requires a central coordinator. Noria’s recovery uses a cen-

tral controller to collect all differentials and tree-clocks, these are then used to solve an

algebraic constraint problem, which yields the order in which the failed operator should

deliver their messages and which messages they should not emit. Finally, no mention is

found on the failures of sink operators, the last in the graph. These operators have no

downstream and thus need special attention.

Ray[46] is a distributed application runtime targeting reinforcement learning and

other AI tasks. Its programming model is based on tasks and actors, and actors, while

the underlying execution engine is purely based on tasks. To provide fault-tolerance,

the lineage of these tasks is tracked. Since actors are stateful entities, lineage graphs are

augmented with state edges, which order task executions on the same actor. Originally,

lineage tracking was done synchronously, much like Dryad or Spark. In [55], Ray was ex-

tended with the lineage stash, a technique that allows lineage to be logged asynchronously.

If only asynchronous writing of the lineage was done, then in the case of failures, orphan

tasks would be created. This is why the system was also extended with causal logging.

When a task invokes a second task, it piggybacks the delta of the lineage graph. This

way, if the first task fails before logging the lineage in stable storage, the second task is

able to provide it with the necessary lineage information. However, much like Noria, the

authors assume deterministic tasks and actors, meaning that again the only source of

nondeterminism is the order of execution of tasks.

2.3.3 High-availability for Distributed Stream Processing

Some strategies for providing high availability in stream processing have been explored

in the past with moderate success. In [37], the authors explore the use of classic process-
pairs high-availability can be applied to stream processing, then move on to present their

own solution.

Process-pairs high-availability involves having a primary and a secondary copy of

an operator running simultaneously. The secondary may be in passive-standby, where it

synchronously receives the operator state snapshots or in active-standby, where it receives

and silently processes all records the primary receives. Under failure, the secondary

takes-over execution and some recovery approach is used to bring the system back to a

stable state. The authors highlight three categories of such approaches, one of which then

26

2.3. DATAFLOW SYSTEMS

subdivides into three cases:

• Gap recovery: Recovery methodology under which there may be a gap in outputted

records after recovery.

• Rollback recovery: Recovery methodology under which the result allows duplicate

records but is “equivalent” to a failure-free execution. This is because sources of

nondeterminism may affect the results computed by the secondary operator. This is

not to be confused with the Rollback Recovery techniques discussed earlier. Three

subcases are identified:

– Repeating: Duplicate records are identical to those produced previously by

the primary.

– Convergent: Duplicate records may be different, but the execution converges

to the same state the failed operator was in.

– Divergent: Duplicate records may be different and the execution diverges from

the state the failed operator was in.

• Precise recovery: A recovery methodology under which failures are perfectly masked.

They also classify operators according to how they affect recovery semantics. The

classes are, from most to least general, arbitrary, deterministic, convergent-capable and

repeatable. Arbitrary operators have no constraints, deterministic operators apply a deter-

ministic function on their inputs and state, convergent-capable operators can build their

state from an empty state (e.g. BSort, aggregate) and reach a valid state, finally repeat-

able operators (map, filter) are convergent-capable operators whose duplicate records are

exactly equal to the original.

The authors then conclude that passive standby is capable of delivering repeating

rollback recovery for deterministic recovery and divergent rollback recovery for nonde-

terministic ones by having the recovered operator request replay of the latest messages.

Importantly, the authors note that to achieve precise recovery with passive standby, oper-

ators must wait for a checkpoint until they are allowed to forward records downstream.

We believe this overlooks the possibility of using causal logging techniques in order to

achieve precise recovery. Active standby is classified the same way, with the exception

that to provide precise recovery the primary node must synchronously send the determi-

nants of its execution to the secondary. The authors also introduce their own solution,

upstream backup, described earlier in Section 2.3.2.2.

2.3.4 Exactly-once delivery

As streaming systems converge on a distributed snapshotting for consistency, achieving

exactly-once processing requires only restoring the graph to a previous point in time

27

CHAPTER 2. RELATED WORK

and a replayable source of input. Exactly-once processing is a requirement for exactly-

once delivery. To provide exactly-once delivery two methods have been explored in the

past [12, 19]:

• Idempotent sinks: If the pipeline is deterministic (unlikely, as this requires no

message ordering delivery nondeterminism) and the sink is idempotent, then to

achieve exactly-once delivery the sink merely has to eagerly push its results. If

the pipeline is not deterministic then there additionally must be a write-ahead-

log (WAL) of the operations to commit. When a checkpoint is completed, that

epochs operations may be flushed from the WAL to the data sink. The idempotency

guarantees that even if the flush is interrupted, it can be simply repeated to achieve

exactly-once delivery.

• Transactional sinks: By coordinating the output of the sinks with the checkpoint-

ing mechanisms, using an algorithm like 2-phase commit [16], one can achieve

exactly-once delivery. The implementation of the popular Kafka sink works as fol-

lows: on each epoch, each sink opens a transaction with kafka, into which records

are streamed; when a new epoch starts the previous one is considered pre-commited;

when notified of the completion of the first checkpoint, the pre-commited check-

point is committed.

Both these methods increase latency as in-order to insure read-committed isolation, one

must wait for the checkpoint notifications in order to read the new records. Depending

on the checkpoint frequency this may add a lot to the latency.

2.3.5 Stream Provenance

Fine-grained lineage refers to tracking the path of records in a streaming computation.

Thus the provenance of a record is the set of records of the previous streams used to

compute this record.This information can be useful in debugging or reproduction of

results. This section of related work is lightly covered, as it covers a lot of similar ground,

such as operator instrumentation and piggybacking of encoded metadata.

Three identifiable methods exist for this. Inversion[57] implements this by having

operators implement invertible functions. To compute provenance, an output record

is inserted into the sink and flows backwards through the system. Unfortunately, most

interesting functions are not invertible.

The second approach, query rewrite[33], implements this by creating two graphs. One

computes the actual requested computation, the other, of the same shape tracks the

lineage. The drawback of this approach is its overhead.

In Ariadne[34], the authors provide a third approach: operator instrumentation. Here,

operators are instrumented with the ability to generate, propagate and delete provenance

information from records. Records are augmented with provenance metadata and flow

28

2.4. CONCLUSIONS

through the system carrying it. This is interesting because it is similar to the flow of de-

terminants used in causal logging. The authors go through a few encoding optimizations

which are relevant for this work:

• Interval encoding: Interval encoding is most useful in encoding tumbling windows,

windows where the slide is larger than the size. The range of inputs is encoded

instead of sending the full data. For example instead of sending the sequence

5,6,7,8,9, one may instead send 5-9.

• Delta encoding: Delta encoding is most useful for sliding windows with a small

slide and large size. The difference from the previous window is encoded. As an

example, take the window from the previous example as the past window, and

6,7,8,9,10 as the new window. We may encode simply the following -5,+10.

• Dictionary compression: Dictionary compression uses compression techniques to

reduce the size of the data sent. This is useful above a certain threshold which may

be found experimentally.

2.4 Conclusions

We observe that as streaming systems have evolved a few requirements have become

mandatory. Early systems were very concerned with high-availability, but it was provided

either at the cost of strong semantics or high overhead and computational requirements.

Later systems have focused on providing strong semantics under failures, while giving

up research on high-availability. Recent use-cases have revived the search for effective

methods for high-availability, while maintaining these semantics. For this, a process-pairs

approach can be taken, but is not enough to guarantee consistency.

Exactly-once processing and delivery semantics are extremely important to both sim-

plify the lives of users and allow streaming systems to be used for reactive applications.

This is highlighted by two facts: load-shedding techniques have lost popularity, while the

use of message queues to store the streams in a stable fashion have increased in popular-

ity. The use of message queues allows for pull-based sources to reset their position to a

previous one in order to guarantee at-least-once processing.

Dataflow systems can be seen as assynchronous message passing systems, thus roll-

back recovery algorithms can be applied freely. Streaming systems already apply check-

pointing to bound how far back in the stream they have to recover from. However, to

maintain consistency, they are forced to rollback every node in the computational graph.

Adding logging to these systems would allow a single node to be rolled back, recovering

it from the logged determinants. Pessimistic logging is not a good choice as it requires

accessing stable storage after processing every record, while optimistic logging risks los-

ing determinants after a failure. Causal logging emerges as the solution, given that it can

provide safety without requiring access to stable storage, and has also be shown to not

29

CHAPTER 2. RELATED WORK

have high overhead. The structured communication graph of streaming computations

allows us to take advantage of several encoding tricks such as the ones used from stream

provenance which may aid in further reducing the overhead of piggybacked data.

The use of transactional sinks allows for additionally guaranteeing at-most-once deliv-

ery under failures, which together with replayable sources provides exactly-once delivery,

but increases latency due to batching of output commit. Causal logging would allow

for operators to independently output commit while guaranteeing exactly-once delivery

without the use of transactions, by attaching the determinants to the message to be sent.

30

C
h
a
p
t
e
r

3
Proposed Work

This chapter begins by summarizing the proposed approach and highlighting the require-

ments of this new approach, as well as the improvements it enables to be developed on

top of it. Following, the choice of framework on which this prototype will be developed

is explained and further detail on it is given. Afterwards, the evaluation plan for this

approach is proposed. The work to be performed is then decomposed into tasks, which

are then scheduled in the remaining time of the thesis work.

3.1 Description

The proposed work involves designing, implementing and evaluating a fault-tolerance

solution providing granular recovery of single operators to stream processors, while

guaranteeing consistency after recovery and exactly-once processing guarantees, with

low overhead. The solution proposed would use checkpointing along with causal logging

to remove the nondeterminism present in between checkpoints. During failure-free

operation operators would keep a volatile log of the messages they have sent since the

last checkpoint, called an in-flight log. They also keep a volatile log of determinants,

where they store both their determinants and all upstream determinants. Determinants

are piggybacked on records sent. Checkpoint notifications trigger a truncation of these

logs, bounding their size. If determinants are sent only one operator downstream, this

provides a k-safety of one. This extends for any k. The extra overhead of tracking causality

is of course expected to have an impact on throughput, however we believe the benefits

outweigh the detriments in many use-cases.

To support a causal logging solution, one must verify the piecewise deterministic

assumption, and thus one must correctly identify and log all sources of nondeterminism.

Until now, identified sources are: message delivery order; accessing state external to

31

CHAPTER 3. PROPOSED WORK

the operator (e.g. a REST operation); the use of random number generation; the use of

physical clock time and the elements inside a window at the moment it fires. Interestingly,

punctuation such as watermarks, if logged along side records in the in-flight log, would

make event-time windows deterministic.

During recovery of a failed operator d, d’ the recovering operator first obtains the

last checkpoint of d from the coordinator, then requests a copy of its determinants from

downstream. It then requests replay of the messages since the checkpoint from its up-

stream nodes. Using the determinants it is able to deliver messages in the correct order

and restore itself to the before failure state. Computation resumes as normal. Figure 3.1

shows a high-level view of this algorithm, where message delivery order is assumed to

be the only source of nondeterminism. The in-flight log of a shows that it sent operator

b the message va1, while the determinant log of f shows that it knows that d delivered a

message from b, then two messages from c.

Determinant	Log
∅

In-Flight	Log
[v1

b]Source

id:	a

Map1

id:	b

Map2

id:	c

FlatMap

id:	e

Sink

id:	f

Determinant	Log
∅

In-Flight	Log
[v1

c,	v2
c]

Determinant	Log
d:	[b,c,c]

In-Flight	Log
[v1

e]

Determinant	Log
d:	[b,c,c]

Determinant	Log
∅

In-Flight	Log
b:	[v1

a]
c:	[v2

a,	v3
a]

2.	Request	Replay

2.	Request	Replay

3.	Reconstruct	state

Sliding	Window

id:	d'

1.	Retrieve	Determinant	Log

Figure 3.1: High-level view of the execution of the recovery algorithm.

Although the algorithm may seem simple, it is not trivial to operationalize, as stream

processors are highly optimized systems, and any interference in their critical path may

introduce bottlenecks. However implementing this type of fault-tolerance would allow a

stream processor to evolve to provide more functionalities and guarantees:

• High availability: No current system supports extremely fast inexpensive consis-

tent fail-over of failed operators. By combining this approach with an Active/S-

tandby approach, a fast failover approach could be achieved where standby oper-

ators are quickly switched for failed operators and then the recovery algorithm is

applied. Ideally, a standby could be active for several operators at a time.

32

3.1. DESCRIPTION

• Low latency exactly-once delivery: Current streaming systems use transactions to

commit output exactly once. This essentially batches the output leading to high

latency. By storing the determinants in the external system to which we output, it

would be possible to implement a recovery mechanism which ensures exactly-once

delivery, but can continually output records.

• Time travel debugging: Having in-flight messages, and deterministic replayability,

it is possible to have the ability to set an offset in a stream and look at the state

in which it was, without needing to replay the stream. One must only use the

determinants and in-flight messages to move the computations state forwards and

backwards.

• Uncoordinated checkpointing: While coordinated checkpointing is necessary in

current approaches, with causal logging we may choose different frequencies for

checkpointing. For example, we may heuristically choose to checkpoint when the

operator has the least state. Additionally, communication induced checkpointing

may offer further optimizations.

3.1.1 Requirements

In this section the requirements of the solution are formalized using the MOSCOW

method[56].

1. Must have: Support for fine-grained recovery of operators through the use of causal

logging.

2. Must have: Consistent global state upon recovery.

3. Must have: Exactly-once processing guarantees.

4. Must have: Precise High availability.

5. Must have: An extensible determinant logging and replay method, to accommodate

for new sources of nondeterminism.

6. Should have: Low latency exactly-once delivery as described in the above section.

7. Should have: Minimal effect on the throughput and latency of the system during

failure-free operation.

8. Should have: Configurability, providing a trade-off between higher failure-free

throughput and fault-tolerance guarantees.

9. Should have: Minimal global coordination, allowing for unaffected branches of

computation to continue during recovery.

10. Won’t have: Time-Travel Debugging.

11. Won’t have: Uncoordinated checkpointing.

33

CHAPTER 3. PROPOSED WORK

3.2 Framework for prototype

The framework chosen for implementing the prototype of this approach is Apache Flink[13].

The choice is based on several factors, first it is an open-source system, allowing for

modifications. Second, it has a very strong community paired with a straightforward

method for submitting improvements, allowing for possible contribution to a popular

open-source project. It is also a streaming system built for real-time analytics, which will

benefit from faster recovery. Several companies have already implemented large com-

putations on Flink, in which case fast recovery becomes even more important. Interest

in implementing more arbitrary computations in Flink is also rising, with some imple-

menting social network backends[26], others using it as a backend for stateful functions

as a service[2, 42, 49] and even general interest in the Kappa architecture[44]. These

use-cases, being more Online Transaction Processing oriented, require fast processing of

input with exactly-once delivery semantics, which will benefit from our approach. Un-

like others, Flink already implements incremental and asynchronous checkpointing[20],

and transactional exactly-once delivery [12], allowing for easier comparisons between

approaches. It also integrates with several external systems, allowing plenty of choice in

testing infrastructure.

3.3 Evaluation of solution

To evaluate the solution produced, we shall compare the system to an unmodified version

of the system. Several metrics should be measured: the effect on throughput, the effect

on latency and the additional memory overhead. Recovery time should also be measured

and compared to the current solution. Correctness is also important to experimentally

evaluate in such a complex recovery mechanism, meaning that the recovered state should

be consistent with the pre-failure state. Several experimental parameters can already be

identified, such as the level of paralelism and depth of the computation, as well as the

state size of operators and checkpointing frequency. On a later phase, if time allows it, we

could also explore the ability of this system to make progress in high churn environments

such as edge environments or cheap preemptable computing cloud offerings.

3.4 Scheduling

To organize this work, we create four main goals: Design, Implementation, Evaluation

and Reporting. Each of these goals is then broken up into granular tasks, easier to man-

age. Though some work on designing the algorithm must still be performed, as well as

designing optimizations, some necessary components are already known to be needed

and others can be estimated. The tasks and their scheduling are shown below:

34

3.4. SCHEDULING

1. Design

a) Explore the existing code base.

b) Find and document possible optimizations.

c) Produce a design document detailing the following implementation.

2. Implementation

a) Implement logging mechanisms.

b) Implement recovery algorithm.

c) Implement API to configure recovery mechanism.

d) Implement low latency exactly-once delivery.

3. Evaluation

a) Perform throughput, latency and memory usage benchmarks.

b) Evaluate recovery time.

c) Evaluate ability to make progress under failure.

4. Reporting

a) Write thesis body.

Table 3.1: Scheduling proposed for thesis work.

Months March April May June July August September

Weeks 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Goal 1 - Design X X
Task 1.a X
Task 1.b X
Task 1.c X

Goal 2 - Implementation X X X X X X X X X X X X
Task 2.a X X X X
Task 2.b X X X X
Task 2.c X
Task 2.d X X X

Goal 3 - Evaluation X X X X X X
Task 3.a X X X
Task 3.b X
Task 3.c X X

Goal 4 - Reporting X X X X X X X X X X X X X X
Task 4.a X X X X X X X X X X X X X X

35

Bibliography

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. “The design of the borealis

stream processing engine.” In: Cidr. Vol. 5. 2005. 2005, pp. 277–289.

[2] A. Akhter, M. Fragkoulis, and A. Katsifodimos. “Stateful functions as a service in

action.” In: Proceedings of the VLDB Endowment 12.12 (2019), pp. 1890–1893.

[3] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. “MillWheel: Fault-Tolerant Stream Process-

ing at Internet Scale.” In: Very Large Data Bases. 2013, pp. 734–746.

[4] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax, S. McVeety,

D. Mills, P. Nordstrom, and S. Whittle. “MillWheel: fault-tolerant stream process-

ing at internet scale.” In: Proceedings of the VLDB Endowment 6.11 (2013), pp. 1033–

1044.

[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,

R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. “The dataflow model:

a practical approach to balancing correctness, latency, and cost in massive-scale,

unbounded, out-of-order data processing.” In: (2015).

[6] L. Alvisi. Understanding the message logging paradigm for masking process crashes.
Tech. rep. Cornell University, 1996.

[7] L. Alvisi, K. Bhatia, and K. Marzullo. “Causality tracking in causal message-logging

protocols.” In: Distributed Computing 15.1 (2002), pp. 1–15.

[8] L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. De Mel. “An analysis of com-

munication induced checkpointing.” In: Digest of Papers. Twenty-Ninth Annual
International Symposium on Fault-Tolerant Computing (Cat. No. 99CB36352). IEEE.

1999, pp. 242–249.

[9] L. Alvisi, B. Hoppe, and K. Marzullo. “Nonblocking and orphan-free message

logging protocols.” In: FTCS-23 The Twenty-Third International Symposium on Fault-
Tolerant Computing. IEEE. 1993, pp. 145–154.

[10] L. Alvisi and K. Marzullo. “Trade-offs in implementing causal message logging

protocols.” In: Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing. Citeseer. 1996, pp. 58–67.

37

BIBLIOGRAPHY

[11] L. Alvisi and K. Marzullo. “Message logging: Pessimistic, optimistic, causal, and

optimal.” In: IEEE Transactions on Software Engineering 24.2 (1998), pp. 149–159.

[12] Apache Flink exactly-once implementation. https://flink.apache.org/features/

2018/03/01/end-to-end-exactly-once-apache-flink.html. Accessed: 2019-

11-04.

[13] Apache Flink frontpage. https://flink.apache.org/. Accessed: 2019-11-04.

[14] M. D. de Assuncao, A. da Silva Veith, and R. Buyya. “Distributed data stream pro-

cessing and edge computing: A survey on resource elasticity and future directions.”

In: Journal of Network and Computer Applications 103 (2018), pp. 1–17.

[15] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. “Fault-tolerance

in the Borealis distributed stream processing system.” In: Proceedings of the 2005
ACM SIGMOD international conference on Management of data. ACM. 2005, pp. 13–

24.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Vol. 370. Addison-wesley New York, 1987.

[17] B. H. Bloom. “Space/time trade-offs in hash coding with allowable errors.” In:

Communications of the ACM 13.7 (1970), pp. 422–426.

[18] W. Brackenbury, R. Liu, M. Mondal, A. J. Elmore, B. Ur, K. Chard, and M. J. Franklin.

“Draining the data swamp: A similarity-based approach.” In: Proceedings of the
Workshop on Human-In-the-Loop Data Analytics. ACM. 2018, p. 13.

[19] P. Carbone, S. Ewen, G. Fóra, S. Haridi, S. Richter, and K. Tzoumas. “State man-

agement in Apache Flink®: consistent stateful distributed stream processing.” In:

Proceedings of the VLDB Endowment 10.12 (2017), pp. 1718–1729.

[20] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. “Lightweight asyn-

chronous snapshots for distributed dataflows.” In: arXiv preprint arXiv:1506.08603
(2015).

[21] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. “Apache

flink: Stream and batch processing in a single engine.” In: Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering 36.4 (2015).

[22] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-

braker, N. Tatbul, and S. Zdonik. “Monitoring streams: a new class of data man-

agement applications.” In: Proceedings of the 28th international conference on Very
Large Data Bases. VLDB Endowment. 2002, pp. 215–226.

[23] K. M. Chandy and L. Lamport. “Distributed snapshots: Determining global states

of distributed systems.” In: ACM Transactions on Computer Systems (TOCS) 3.1

(1985), pp. 63–75.

38

https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://flink.apache.org/features/2018/03/01/end-to-end-exactly-once-apache-flink.html
https://flink.apache.org/

BIBLIOGRAPHY

[24] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,

and S. B. Zdonik. “Scalable Distributed Stream Processing.” In: CIDR. Vol. 3. 2003,

pp. 257–268.

[25] J. Dean and S. Ghemawat. “MapReduce: Simplified data processing on large clus-

ters.” In: (2004).

[26] Drivetribes Flink Backend. https://www.ververica.com/blog/drivetribe-cqrs-

apache-flink. Accessed: 2019-11-04.

[27] E. N. Elnozahy and W. Zwaenepoel. “Manetho: Transparent roll back-recovery with

low overhead, limited rollback, and fast output commit.” In: IEEE Transactions on
Computers 5 (1992), pp. 526–531.

[28] E. N. Elnozahy. “Manetho: fault tolerance in distributed systems using rollback-

recovery and process replication.” Doctoral dissertation. Rice University, 1994.

[29] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. “A survey of rollback-

recovery protocols in message-passing systems.” In: ACM Computing Surveys (CSUR)
34.3 (2002), pp. 375–408.

[30] Y. Y. M. I. D. Fetterly, M. Budiu, Ú. Erlingsson, and P. K. G. J. Currey. “DryadLINQ:

A system for general-purpose distributed data-parallel computing using a high-

level language.” In: Proc. LSDS-IR 8 (2009).

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google file system.” In: (2003).

[32] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler, M. F.

Kaashoek, and R. Morris. “Noria: dynamic, partially-stateful data-flow for high-

performance web applications.” In: 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18). 2018, pp. 213–231.

[33] B. Glavic and G. Alonso. “Perm: Processing provenance and data on the same data

model through query rewriting.” In: 2009 IEEE 25th International Conference on
Data Engineering. IEEE. 2009, pp. 174–185.

[34] B. Glavic, K. Sheykh Esmaili, P. M. Fischer, and N. Tatbul. “Ariadne: Managing fine-

grained provenance on data streams.” In: Proceedings of the 7th ACM international
conference on Distributed event-based systems. ACM. 2013, pp. 39–50.

[35] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

“Graphx: Graph processing in a distributed dataflow framework.” In: 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14). 2014,

pp. 599–613.

[36] J. Hamilton. The cost of latency.

[37] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik.

“High-availability algorithms for distributed stream processing.” In: 21st Interna-
tional Conference on Data Engineering (ICDE’05). IEEE. 2005, pp. 779–790.

39

https://www.ververica.com/blog/drivetribe-cqrs-apache-flink
https://www.ververica.com/blog/drivetribe-cqrs-apache-flink

BIBLIOGRAPHY

[38] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. “Dryad: distributed data-

parallel programs from sequential building blocks.” In: ACM SIGOPS operating
systems review. Vol. 41. 3. ACM. 2007, pp. 59–72.

[39] G. Jacques-Silva, F. Zheng, D. Debrunner, K.-L. Wu, V. Dogaru, E. Johnson, M.

Spicer, and A. E. Sariyüce. “Consistent regions: Guaranteed tuple processing in

ibm streams.” In: Proceedings of the VLDB Endowment 9.13 (2016), pp. 1341–1352.

[40] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. Rice University,

Department of Computer Science, 1987.

[41] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and V. Markl.

“Benchmarking Distributed Stream Data Processing Systems.” In: 2018 IEEE 34th
International Conference on Data Engineering (ICDE) (2018). doi: 10.1109/icde.

2018.00169. url: http://dx.doi.org/10.1109/ICDE.2018.00169.

[42] A. Katsifodimos and M. Fragkoulis. “Operational Stream Processing: Towards

Scalable and Consistent Event-Driven Applications.” In: 2019.

[43] L. Lamport. “Time, clocks, and the ordering of events in a distributed system.” In:

Communications of the ACM 21.7 (1978), pp. 558–565.

[44] J. Lin. “The lambda and the kappa.” In: IEEE Internet Computing 5 (2017), pp. 60–

66.

[45] F. Mattern et al. Virtual time and global states of distributed systems. Citeseer, 1988.

[46] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z.

Yang, W. Paul, M. I. Jordan, et al. “Ray: A distributed framework for emerging

{AI} applications.” In: 13th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18). 2018, pp. 561–577.

[47] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. “Pig latin: a not-so-

foreign language for data processing.” In: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data. ACM. 2008, pp. 1099–1110.

[48] K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al. “The hadoop distributed file

system.” In: MSST. Vol. 10. 2010, pp. 1–10.

[49] Statefun. http://statefun.io.

[50] R. Strom and S. Yemini. “Optimistic recovery in distributed systems.” In: ACM
Transactions on Computer Systems (TOCS) 3.3 (1985), pp. 204–226.

[51] Y. Tamir and C. H. Séquin. “Error Recovery in Multicomputers Using Global Check-

points.” In: In 1984 International Conference on Parallel Processing. 1984, pp. 32–

41.

[52] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff,

and R. Murthy. “Hive: a warehousing solution over a map-reduce framework.” In:

Proceedings of the VLDB Endowment 2.2 (2009), pp. 1626–1629.

40

https://doi.org/10.1109/icde.2018.00169
https://doi.org/10.1109/icde.2018.00169
http://dx.doi.org/10.1109/ICDE.2018.00169
http://statefun.io

BIBLIOGRAPHY

[53] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, et al. “Storm@ twitter.” In: Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM. 2014, pp. 147–156.

[54] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. “Exploiting punctuation se-

mantics in continuous data streams.” In: IEEE Transactions on Knowledge and Data
Engineering 15.3 (2003), pp. 555–568.

[55] S. Wang, J. Liagouris, R. Nishihara, P. Moritz, U. Misra, A. Tumanov, and I. Stoica.

“Lineage stash: fault tolerance off the critical path.” In: Proceedings of the 27th ACM
Symposium on Operating Systems Principles. ACM. 2019, pp. 338–352.

[56] K. Waters. “Prioritization using moscow.” In: Agile Planning 12 (2009), p. 31.

[57] A. Woodruff and M. Stonebraker. “Supporting fine-grained data lineage in a database

visualization environment.” In: Proceedings 13th International Conference on Data
Engineering. IEEE. 1997, pp. 91–102.

[58] G. Yuan. “Scalable Fault Tolerance for High-Performance Streaming Dataflow.”

Doctoral dissertation. Massachusetts Institute of Technology, 2019.

[59] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, and I. Stoica. “Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing.” In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. USENIX Association. 2012, pp. 2–2.

[60] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. “Spark:

Cluster computing with working sets.” In: HotCloud 10.10-10 (2010), p. 95.

[61] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. “Discretized streams:

Fault-tolerant streaming computation at scale.” In: Proceedings of the twenty-fourth
ACM symposium on operating systems principles. ACM. 2013, pp. 423–438.

[62] S. Zeuch, A. Chaudhary, B. Del Monte, H. Gavriilidis, D. Giouroukis, P. M. Grulich,

S. Breß, J. Traub, and V. Markl. “The NebulaStream Platform: Data and application

management for the internet of things.” In: arXiv preprint arXiv:1910.07867 (2019).

41

	List of Figures
	List of Tables
	Introduction
	Context
	Objective
	Expected Contributions
	Document Organization

	Related Work
	Message Passing Systems
	Events
	Virtual time and Digital Clocks
	Consistency

	Rollback Recovery
	Checkpointing-based approaches
	Log-based approaches

	Dataflow Systems
	Batch Computational Model
	Streaming Computational Model
	High-availability for Distributed Stream Processing
	Exactly-once delivery
	Stream Provenance

	Conclusions

	Proposed Work
	Description
	Requirements

	Framework for prototype
	Evaluation of solution
	Scheduling

	Bibliography

