
Vítor Hugo Menino

Bachelor’s Degree in Computer Science and Engineering

A Novel Approach to Load Balancing in P2P
Overlay Networks for Edge Systems

Dissertation plan submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science

Adviser: João Carlos Antunes Leitão, Assistant Professor,
NOVA University of Lisbon

February, 2021

Joao Leitao
The work reported in this document was partially supported by
Fundação para a Ciência e Tecnologia through the Project NG-STORAGE (PTDC/CCI-INF/32038/2017)

Abstract

Edge computing aims at addressing some limitations of cloud computing by bring-

ing computation towards the edge of the system, i.e., closer to the client. There is a

panoply of devices that can be integrated into future edge computing platforms, from

local data-centers and ISP points of presence to 5G towers and even multiple user de-

vices like smartphones, laptops, and IoT devices. For all of these devices to communicate

fruitfully, we need to build systems that enable the seamless interaction and cooperation

among these diverse devices. However, creating and maintaining these systems is not

trivial since there are numerous types of devices with different capacities. This resource

heterogeneity has to be taken into account so that different types of machines contribute

to the management of the distributed infrastructure differently, and the communications

within the network are more efficient.

In this work, we plan to address the challenges identified above by exploring unstruc-

tured overlay networks, that have been shown to be possible to manage efficiently and

in a fully decentralized way, while being highly robust to failures. To that end, we plan

to devise a novel overlay, where the contribution of each device to maintain the system

is translated to maintaining a specific number of overlay neighbors, being this number

dynamically computed and adjusted—influenced on the local perception of each node re-

garding the average device capacity. To show the benefits of our proposal, we will devise a

set of support subsystems that pave the way to build the next generation of edge-enabled

systems. We will evaluate our proposal by comparing it with state of the art decentralized

solutions by combining both simulation (to observe the performance of the solution in

huge scale) and prototype deployments in realistic distributed infrastructures.

Keywords: peer-to-peer systems, edge computing, unstructured overlay networks, gossip

protocols

iii

Resumo

A computação de periferia visa abordar algumas limitações da computação em nuvem,

trazendo a computação para mais perto do cliente. Há uma enorme variedade de disposi-

tivos que podem ser integrados em futuras plataformas de computação de periferia, de

data centers locais e pontos de presença de ISPs a torres 5G e até mesmo dispositivos de

cliente, como smartphones, laptops e dispositivos IoT. Para que todos esses dispositivos

comuniquem de forma proveitosa entre si, precisamos construir sistemas que possibili-

tem a interação e cooperação eficaz entre eles. No entanto, criar e manter esses sistemas

não é trivial, uma vez que existem vários tipos de dispositivos com diferentes capacidades.

Essa heterogeneidade de recursos deve ser levada em consideração para que diferentes

tipos de máquinas contribuam para o gerenciamento da infraestrutura distribuída de

forma distinta e as comunicações dentro da rede sejam mais eficientes.

Neste trabalho, pretendemos enfrentar os desafios identificados acima, explorando

redes sobrepostas não estruturadas, que se têm mostrado possíveis de gerenciar de forma

eficiente e totalmente descentralizada, sendo altamente resistentes a falhas. Para tal, pla-

neamos conceber uma nova rede sobreposta, onde a contribuição de cada dispositivo para

manter o sistema se traduz na manutenção de um número específico de vizinhos na rede,

sendo este número calculado e ajustado dinamicamente – influenciado na percepção lo-

cal de cada nó em relação à capacidade média dos dispositivos na rede. Para mostrar os

benefícios de nossa proposta, iremos desenvolver um conjunto de subsistemas de suporte

que abrem caminho para construir a próxima geração de sistemas para a computação

de periferia. Avaliaremos nossa proposta comparando-a com soluções descentralizadas

de última geração, combinando simulação (para observar o desempenho da solução em

grande escala) e emulação de protótipos em infraestruturas distribuídas realistas.

Palavras-chave: sistemas entre-pares, computação de periferia, redes sobrepostas não

estruturadas, protocolos de rumor

v

Contents

List of Figures ix

1 Introduction 1

1.1 Objective . 1

1.2 Contributions . 2

1.2.1 Research Context . 2

1.3 Document Structure . 3

2 Related Work 5

2.1 Peer-to-Peer . 5

2.1.1 Peer-to-Peer Networks and Edge Computing 6

2.1.2 Peer-to-Peer Architecture . 7

2.2 Peer-to-Peer Services . 8

2.3 Broadcast . 11

2.3.1 Reliable Broadcast Problem . 11

2.3.2 Probabilistic Broadcast Problem . 12

2.4 Overlays . 14

2.4.1 Structured Overlays . 17

2.4.2 Unstructured Overlays . 19

2.4.3 How to Adjust/Bias the Network Topology 23

2.5 Addressing Heterogeneity in Unstructured Overlays 25

2.5.1 Tackling Heterogeneity at the Service Layer 26

2.5.2 Tackling Heterogeneity on the Membership Layer 28

2.6 Discussion . 30

2.7 Summary . 30

3 Future Work 31

3.1 Proposed Solution . 31

3.1.1 Inferring a Node’s Relative Capacity 32

3.1.2 Adjusting the Number of Neighbors of a Node 32

3.1.3 Building the Gossip Protocol . 33

3.2 Evaluation . 33

3.2.1 Overlay Evaluation . 33

vii

CONTENTS

3.2.2 Full Proposal Evaluation . 34

3.3 Schedule . 34

Bibliography 35

viii

List of Figures

2.1 Peer-to-peer node layered architecture. 8

2.2 Diagrams of three different gossip communication modes. 10

3.1 Gantt chart with the expected work schedule. 34

ix

C
h
a
p
t
e
r

1
Introduction

Nowadays, doing all computation on the cloud, i.e., inside data-centers distant from

the end-user, is becoming insufficient mainly due to the high-latency access to these

infrastructures [22]. Edge computing [33] aims at addressing this and other limitations

of cloud computing by bringing computation closer to the end clients.

There is a panoply of devices that can be integrated into future edge computing plat-

forms, from local data-centers and ISP points of presence to 5G towers and even multiple

user devices like smartphones, laptops and IoT devices [22]. For all of these devices to

communicate fruitfully, we need to build systems that enable the seamless interaction

and cooperation among these diverse devices. However, creating and maintaining these

systems is not trivial since there are numerous types of devices with different capacities.

This resource heterogeneity has to be taken into account so that different types of ma-

chines contribute to the management of the distributed infrastructure differently, and the

communications within the network are more efficient [22].

In this work, we plan to address this heterogeneity challenge by exploring unstruc-

tured overlay networks, that have been shown to be possible to manage efficiently and

in a fully decentralized way, while being highly robust to failures. However, most of the

work that has been done in this area deals with homogeneous networks, i.e., networks

composed of nodes whose resources are mostly similar. Nonetheless, the system to man-

age devices with different capacities has to take into account their heterogeneous nature,

therefore, it should be conceived thinking about heterogeneity.

1.1 Objective

In this dissertation, we plan to address device resource heterogeneity in edge computing.

More specifically, we plan to address this problem by dynamically compute and adjust

1

CHAPTER 1. INTRODUCTION

the number of neighbors of each device at the overlay network layer, according to its

local perception regarding its own capacity and the average capacity of devices in the

system. We plan to do this at the overlay layer since this is a component essential to the

effective tracking of membership in large scale systems that highly affects decentralized

interactions.

Doing this arises some challenges. One of them is the challenge to keep the overlay

proprieties sound when changing the number of neighbors of each device. For example,

we have to make sure that the network does not become partitioned when we adjust the

number of neighbors of the nodes. Another challenge that we face is the difficulty to infer

the network average resources given that each node does not have direct access (i.e., is

not directly connected) to every other node. In addition, we also face the challenge of

devising an efficient support subsystem that catalyzes and illustrates the benefits of this

approach when compared with current state of the art.

1.2 Contributions

The main contributions expected from this work are three-fold:

1. The design and implementation of a novel overlay, where the contribution of each

device to maintain the system is translated to maintaining a different number of

overlay neighbors, being this number dynamically computed and adjusted, influ-

enced by the local perception of each node regarding the average device capacity.

2. The design and implementation of a set of support subsystems that pave the way to

build the next generation of the edge-enabled systems, to show the benefits of our

proposed overlay.

3. An experimental comparison of our proposal with state of the art decentralized

solutions by combining both simulation (to observe the performance of the solution

in huge scale) and prototype deployments in realistic distributed infrastructures.

1.2.1 Research Context

This dissertation is done under the context of a research project conducted by NOVA

School of Science and Technology in association with Protocol Labs [16]. Protocol Labs is

a company that focuses on the research, development and deployment of decentralized

distributed systems. Some of their work includes libp2p [15], Filecoin [14] and IPFS [1].

Part of the aforementioned research project consists on the design of a novel multi-

level DHT. It is in this area that the contributions emerged by this dissertation can

provide value. By using an unstructured overlay optimized for heterogeneity, we can

enable the creation of cliques of heterogeneous nodes in close proximity that can share

load and replicate data while being minimally susceptible to failures and churn, due to

the unstructured nature of the overlay that connects them.

2

1.3. DOCUMENT STRUCTURE

1.3 Document Structure

The rest of the document is organized as follows:

• Chapter 2 starts by presenting the relevant concepts that lay ground for the elabo-

ration of the dissertation. More specifically, it explores the concepts of peer-to-peer,

broadcast, overlays and their proprieties. In further sections of that chapter, we

use these previously explained concepts to delve deeper into the problem that we

are trying to solve and present the currently available solutions, exploring their

advantages, disadvantages and how they can contribute to our work. Although

numerous solutions were found, none address the problem in the way that we aim

to—by dynamically adjusting the number neighbors of each node.

• Chapter 3 details the future work to be conducted, the strategy to achieve its ob-

jectives, the challenges that need to be addressed, and the proposed scheduling to

accomplish it.

3

C
h
a
p
t
e
r

2
Related Work

In this chapter, we are delving into the relevant concepts that lay ground for the elab-

oration of this dissertation, while presenting and analyzing related work. The chapter

is structured as following: in Section 2.1 we introduce peer-to-peer; in Section 2.2 we

present services that can be implemented on top of peer-to-peer; in Section 2.3 we delve

into broadcast, its problems and performance metrics; in Section 2.4 we introduce the

concept of overlays, the different architectures, its proprieties and protocols that imple-

ment them; in Section 2.5 we use the concepts explained in previous sections to explore

how the heterogeneity problem can be tackled; finally, in Section 2.6 we reflect on the

contributions that the solutions previously presented can provide to our work.

2.1 Peer-to-Peer

There are two main architectures for distributed computer systems: centralized and

decentralized. Both architectures have advantages and disadvantages and their usefulness

depends on the use case of the system.

Centralized distributed systems rely on a single logical component (usually named

server) that has a special role in the system and that provides services to the other nodes

(i.e., computers, usually called clients in this context) of the system. In such architectures,

clients usually only interact with the server and never directly among them. Usually, these

systems manage to achieve great performance, since its nodes delegate all coordination

tasks (e.g., deciding which node is the current leader) to the single central server. On

the other hand, these systems are highly dependent on the availability of the coordinator,

i.e., if the central server fails, the whole system stops—which is a big disadvantage of

centralized systems. In addition, centralized systems have scalability problems—if the

network is large, it might be impossible for the central server to manage every client in

5

CHAPTER 2. RELATED WORK

the network (i.e., every other node), since they can be numerous, distant from the central

node, and joining and leaving the network on a very frequent basis. These limitations led

to the appearance of systems implementing a different and decentralized architecture,

i.e., decentralized systems.

Decentralized systems, on the other hand, do not rely on a single component that

has a special role on the operation of the whole system. In such architectures, nodes

communicate between themselves directly to execute the system logic: all information

exchange and coordination is performed directly among the participants of the system.

The biggest advantage of decentralized systems is that there is no single point of failure,

which means that numerous nodes could fail and the system would still continue to

operate. In addition, they are more scalable and there is no single component that is in

total control of the system. However, decentralized systems often exhibit poorer overall

performance than centralized systems. A popular example of decentralized systems are

peer-to-peer systems [32], in which clients communicate between themselves and there is

no central server.

One might ask—if centralized systems are theoretically faster, then why use peer-

to-peer decentralized systems? As mentioned above, decentralized systems are usually

more available (i.e., reliable against failures), more scalable, and make shared control

over the system possible. There are a lot of cases where these features might be im-

portant—specially the last one. For example, a distributed system that is composed by

replicas from many different banks should not have a centralized replica that coordinates

it, because that would mean setting one bank as a coordinator of the system (i.e., control

all the other banks), and if the coordinator bank would fail, the whole system would halt.

2.1.1 Peer-to-Peer Networks and Edge Computing

Peer-to-peer networks are regaining some popularity due to the emergence of edge com-

puting [33]. Edge computing encompasses every computation done outside the cloud, i.e.,

outside the logical central computational unit. The rationale behind edge computing is

moving the computation closer to the client so that, instead of all data generated by the

clients being processed in the cloud (data-centers), some of that data can be processed

on intermediary hardware (possibly including the client’s device), in order to provide

better latency, reliability and scalability [22], while avoiding saturating network links

connecting clients to the cloud data-centers.

In the last years, two particular models emerged within the edge computing realm that

have received significant attention—fog [25] and mist computing [10]. They are both seen

as more specific instances of edge computing [22]. Fog computing aims to improve the

overall performance of IoT applications by installing servers physically close to sensors

that generate large amounts of data. These servers can preprocess data before sending

it to the cloud data-centers, resulting in less load on these and on the network infras-

tructure in general. Beyond that, the fog servers can also reduce the latency observed

6

2.1. PEER-TO-PEER

by the clients by doing time-sensible work and quickly replying to the client with any

relevant time-sensible information (e.g., an alarm). The second model, mist computing, is

an evolution of fog computing, where not only servers are installed nearby the clients and

used for computation, but the clients themselves are also used to perform data-filtering

computational work. Using the clients’ hardware to do some computational work alle-

viates the load imposed on edge and cloud servers (and on the network), resulting in a

better overall system performance and resource usage.

Peer-to-peer networks can be useful in edge computing in different ways. Firstly,

because there are a lot of different nodes (i.e., computers) in the edge environment, man-

aging them centrally becomes a daunting task, which is hard to perform in a timely

fashion [4]. It is difficult mainly because in a centralized management system, the central

component would be saturated with messages from all the nodes in the system. In addi-

tion to that, it is difficult because the network that encompasses those nodes can be wide,

i.e., we can have nodes in remote locations, which makes it infeasible to timely manage

changes in the configuration of the system. Using peer-to-peer networks to implement

decentralized control solves these problems because the nodes usually only communicate

with other nodes that are in their virtual vicinity [20], thereby not saturating a coordinator

nor presenting unnecessary delay in the management communications.

One might suggest that for not saturating the coordinator we could have different hier-

archies of coordination. This also constitutes a centralized architecture, since there is also

one top-level coordinator that manages the whole network through the other coordina-

tors [38]. However, such a solution does mitigate both problems mentioned above—node

saturation and communication delay. Nonetheless, even such an optimized centralized so-

lution ends up suffering other limitations. One of them is regarding the reliability—with

a centralized system, we have a single point of failure (the top coordinator). This issue

is avoided in most peer-to-peer decentralized systems because network management is

a responsibility shared among the peers (i.e., nodes). The other problem is that in edge

computing, nodes are usually not owned by the same entity—we can have nodes owned

by different companies and individuals. That said, it is not wise to let a single coordinator

(from one of those companies or individuals) manage the entire network, because that

would involve having to trust that node for the whole system to keep operating.

2.1.2 Peer-to-Peer Architecture

When it comes to the system architecture at a typical peer-to-peer system, each of the

nodes runs a stack of (usually) three protocols (which can be perceived as layers in

their abstract peer-to-peer architecture): membership layer, service layer and applica-

tion layer [20]. The layers within each node communicate with each other (to support the

execution of the system logic) locally, and communicate with the equivalent layer of other

nodes using message passing mechanisms that are sent through the network. Figure 2.1

illustrates the presented abstract peer-to-peer architecture, which is explained in detail

7

CHAPTER 2. RELATED WORK

below.

Figure 2.1: Peer-to-peer node layered architecture.

The membership layer is responsible for maintaining the neighbors of each node, i.e,

the other nodes in the system that each node knows about and with whom it exchanges

information directly. This layer communicates with other nodes’ membership layers in

order to maintain each node’s local and partial view of the system membership (i.e., which

neighbors each node has) [20]. This layer is going to be analyzed in depth on Section 2.4.

The service layer is responsible for providing higher level services to the application

layer taking advantage of the membership layer. In other words, this layer uses the local

view of the system provided by the membership layer to send messages to the node’s

neighbors in order to perform some function for the application layer (e.g., broadcast

a message or identify some particular node) [20]. This layer is going to be analyzed in

depth on Section 2.2.

The application layer uses the service layer (and potentially the membership layer)

to implement a distributed application. It is in this layer that the application logic re-

sides [20]. For example, if we were to implement a distributed file system where each

node hosts part of the contents of the file system, this layer would be responsible for the

application logic which involves exposing the operations over files and directories but not

operations such as data/message dissemination (because that is typically implemented at

the service layer) and membership management (because that is a responsibility of the

membership layer).

2.2 Peer-to-Peer Services

There are numerous services that can be implemented in the service layer. As mentioned

above, these services provide functionalities for the application layer and usually involve

the exchange of data (in the form of messages) between the nodes.

One of those services is streaming. In this type of service, a flow of data is sent

by one node through the other nodes in order for the multiple receivers to be able to

receive that flow of data and feed the application layer with it. Another common service

is shared storage, which aims at sharing (e.g., splitting) data between the nodes for the

8

2.2. PEER-TO-PEER SERVICES

client application to enable sharing the access to files by multiple parties. One example

of an application that can be built on top of it is a shared file system [37], as mentioned

above.

The service layer is also used to implement routing solutions. These solutions aim

at discovering and providing efficient and up-to-date routing paths for the messages

to be sent through, among individual parties. This enables point-to-point exchange of

information at the application layer.

Lastly, the service layer can implement a broadcast solution, which aims at dissemi-

nating messages across all nodes of the network. We are going to focus on broadcast in

Section 2.3.

One of the building blocks that is used to implement many of the services mentioned

above is gossip [20]. Gossip is a class of decentralized protocols that are many times

employed to disseminate information through nodes with a confirmable probabilistic

assurance. They are also employed to synchronize replicas. Due to their probabilistic

essence, gossip protocols usually rely on parameters that enable the control over their

probabilistic guarantees and cost.

In a nutshell, gossip works as follows. When a process (i.e., the software that a node

runs) wants to disseminate a message, it picks t (the fanout) random nodes from its

neighbors and sends the message to those nodes. When a process receives a message for

the first time, it simply repeats the process (possibly avoiding sending the message back

to the sender) [20].

In their most simple form, gossip algorithms have two parameters: the fanout and

the maximum rounds [21]. The fanout [21] consists on the number of neighbors that each

neighbor disseminates a message to. The fanout has an impact on the probability that

every node receives the message. For this probability to be high, the fanout should be

t >= ln(n), t being the fanout and n being the total number of nodes in the network [7].

That said, the higher the fanout, the more likely it is that all nodes receive (and then

deliver to the application layer) the message being disseminated. On the other hand, a

higher fanout results in more traffic on the network. Thus, the chosen fanout for the gossip

implementation depends on the goals for the system, i.e., what is most important—high

probability of total dissemination (i.e., all nodes receiving the disseminated message) or

lowering the bandwidth consumption.

The maximum rounds parameter corresponds to the maximum number of times that

a message can be retransmitted by nodes [21]. One way to control this is by using a

round-number that is carried by messages. When a message is first transmitted (from

the original sender), it carries a round-value of zero. This value is increased every time

that a node retransmits the message. When a node receives a message for the first time

and its round number is equal or higher than the maximum rounds parameter, the node

does not retransmit the message. This round-value can be seen as a TTL (Time-to-live) of

the message being disseminated. Many simple implementations of gossip dissemination

protocols set this value to infinite.

9

CHAPTER 2. RELATED WORK

Gossip interactions among pairs of nodes can be conducted in three different ways:

eager push gossip (also known as push gossip), pull gossip, and lazy push gossip [21].

Eager push gossip [21] consists in the original behavior as described previously, where a

node sends the payload message to t (fanout) random neighbors once it receives it for the

first time. This is the faster communication mode, although it can be expensive in terms

of traffic, specially if payload messages are big—due to the redundant nature of gossip.

An alternative to this is to employ pull gossip [21], where the nodes which do not yet

have the payload message ask t random nodes for it. If one of those nodes has it, then it

sends the payload message back to the node who asked. This solution produces less traffic

than eager push gossip if the payload messages are big, because the number of redundant

payload messages being transferred is not as high. However, if the payload messages are

small (specifically, if they are smaller than the “ask” messages), then this solution ends up

creating more traffic due to the fact that now we have—in practice—two messages being

transferred between each pair of nodes (the payload message and the “ask” message). Pull

gossip is also usually the slowest solution, since the nodes that do not have the payload

message are the ones who have to ask for it to get it, and since they do not know when

there are new messages, they end up setting a periodical timer to ask for new messages—a

timer that cannot be very frequent because otherwise the traffic would be too much, and

it would not be worth it to use a pull approach.

Finally, the other—more sophisticated—communication method is lazy push gos-

sip [21]. In this method, the nodes that receive the payload message for the first time send

a payload message ID (mid) to t random nodes. If those nodes do not possess that payload

message yet, they reply asking for the payload message. Then, the payload message is sent

to them. This communication mode is faster than pull gossip and if the payload messages

are big, it is faster than eager push gossip too. However, it is the communication mode

with more communication steps, which adds complexity to the system. In Figure 2.2, we

can see a diagram illustrating each of the communication modes explained above.

(a) Eager push gossip. (b) Pull gossip. (c) Lazy push gossip.

Figure 2.2: Diagrams of three different gossip communication modes.

There are numerous variants of gossip—all with different advantages and disadvan-

tages. All these variants use different fanout and/or communication modes, some even

combining multiple communication modes at once [17]. The simplest gossip strategy is

flood [20]. In this strategy, eager push is used as communication mode and the fanout is

always the same as the number of neighbors of each node. Flood produces a lot of traffic,

but it assures the highest probability (out of all strategies) for every node to receive the

10

2.3. BROADCAST

disseminated message. Other commonly used strategy is Anti-Entropy [31]. It uses a

fanout of 1 and pull as the communication mode (executed by every node in the system

periodically). This strategy is widely used for replicating non time-sensitive data in dis-

tributed databases [31]. It is extremely slow but does not use a lot of bandwidth (due to

very low traffic). The random-walk strategy [20] also uses a fanout of 1 but uses eager

push as the communication mode (usually with a maximum number of retransmissions

per message, i.e., with a maximum rounds parameter set to some value below infinite).

This strategy is useful to search content in the network. For example, if a node wants to

search for a file in the other nodes of the network, it can send a message in a random-walk

so that if the message reaches a node that has that file, that node replies to the searcher

node saying that it has the file.

Some of these variants can be used to implement various gossip-based services that

are going to be thoroughly studied in this work. In the next section, we are going to delve

into some of these.

2.3 Broadcast

The broadcast problem can be synthesized as follows: a process needs to transmit the

same message m to n other processes (where n is every process in the system including it-

self). There are several different formulations of this problem. Some of these have weaker

guarantees, like the best-effort broadcast (e.g., IP Multicast [6]). Others have strong pro-

prieties that provide strong guarantees, like the reliable broadcast problem [12].

2.3.1 Reliable Broadcast Problem

As the name suggests, the reliable broadcast problem [12] is the strongest problem. It is,

hence, a stronger version of the best-effort broadcast problem. Reliable broadcast states

that if a correct process i delivers message m, then every process j has to deliver message

m at some point in time.

One solution to solve this problem is to use flood [20]. As described above (in Sec-

tion 2.2), when using flood, when a node receives a message for the first time, it sends

that message to all of its neighbors, i.e., all the nodes that that node knows about. This

way, we are flooding the network with the message, so that all nodes receive it (and, con-

sequently, deliver it to the application layer). Although flooding the network is effective

(and it is a very simple and easy to implement solution), it creates a lot of redundant

messages in practice, which leads to a lot of traffic and, consequently, high bandwidth

usage. For that reason, flood is not an optimal solution for broadcasting messages in

the real world. Furthermore, if a connected node is temporarily disconnected from the

system (i.e., has no valid neighbor) it might not receive messages flooded in the network,

and an additional mechanism, such as anti-entropy [31], is required, increasing the cost

of the protocol. Since we cannot solve the reliable broadcast problem without such a high

11

CHAPTER 2. RELATED WORK

load of redundant messages, we have to relax the reliable broadcast problem so that we

can implement solutions that work in practice. That is where the probabilistic broadcast

problem comes into play.

2.3.2 Probabilistic Broadcast Problem

The probabilistic broadcast problem is a relaxed version of the reliable broadcast problem.

In the probabilistic broadcast problem, if a message is delivered by some correct process,

then it is delivered by every correct process with a configurable high probability [13]. This

means that, when implementing a solution to this problem, we can choose how likely it

is that all nodes in the network receive the broadcasted message, effectively controlling

the trade-off between communication cost and reliability. This is relevant since there is a

direct correlation between the likelihood of all nodes to receive the broadcasted messages

and the number of redundant messages traversing the network during the process. That

means that if we relax the likelihood of all nodes receiving the message, then we can send

less redundant messages and, consequently, generate less traffic.

Epidemic broadcast is a family of protocols that use gossip to solve the probabilistic

broadcast problem. The communication mode used is eager push and t >= ln(n)∧ (t < n),

t being the fanout and n being the total number of nodes in the network [20]. It is called

epidemic broadcast because the message is spread on an epidemic fashion, where each

node “infects”, i.e., sends the message to t (fanout) other nodes [18]. The probability of

all nodes receiving the broadcasted message is configurable by changing the fanout used

by the algorithm [13]. A higher fanout will result in a higher probability of all nodes

receiving the broadcasted message but will also increase the number of redundant mes-

sages [21]. A lower fanout does the opposite. When implementing epidemic broadcast

algorithms, the challenge is to find the harmony between the likelihood of all nodes re-

ceiving the broadcasted message versus generating a lot of redundant traffic, i.e., choosing

the right fanout.

According to [7], the probability p of all n nodes to receive the broadcasted message

using an epidemic broadcast protocol with a fanout t is:

p = 1/(1 +n ∗ e−t) (2.1)

2.3.2.1 The Beauty and the Beast of Epidemic Broadcast

Redundancy can be seen as the Beauty and the Beast of epidemic broadcast. On one hand,

it can be good because since messages can be lost in the network (while in transit between

two nodes), redundancy will make sure that—with a high probability—everyone will

receive the message, because it will organically compensate for the lost messages in the

network.

On the other hand, redundancy has a dark side, because on average each process will

receive the broadcasted message t (fanout) number of times (from different processes).

12

2.3. BROADCAST

This adds a lot of redundant traffic to the network and can have a big impact on a network

composed by low bandwidth devices. Furthermore, processing such redundant messages

also has a cost in terms of CPU usage. The total cost of messages of an epidemic broadcast

protocol with a fanout t on a network with n nodes is t ∗n.

2.3.2.2 Performance Metrics

There are a series of metrics that can be used in order to evaluate and compare epidemic

broadcast protocols. These metrics can also be generalized to evaluate the performance

of other classes of gossip-based protocols.

Reliability Reliability in this context can be defined as the percentage of nodes of the

system that received (and then delivered to the application layer) a broadcasted

message [21]. A broadcast reliability of 100%—where all the nodes receive and

deliver the broadcasted message—indicates that atomic broadcast was achieved [13].

Even though we usually aim at probabilities very close to 100%, unless flooding is

used (i.e., the fanout is equal to the number of neighbors), with epidemic broadcast

we can never be sure that we are going to achieve such a reliability—due to the

probabilistic nature of epidemic protocols. A higher fanout usually leads to a higher

reliability and a lower fanout usually leads to a lower reliability [13].

Relative Message Redundancy (RMR) The relative message redundancy is a metric that

captures the message overhead in an epidemic broadcast (or other gossip-based

broadcast mechanisms) [17]. It is equal to:

(m/(n− 1))− 1 (2.2)

m being the total number of messages exchanged during the broadcast and n be-

ing the number of nodes that received and delivered the broadcasted message [17].

This metric is only applicable when m >= 2. Usually, the optimal RMR value is

zero [17]. A value of zero would mean that there was exactly one payload mes-

sage exchanged per receiver in the system. That would mean that we spent exactly

the bandwidth necessary to propagate the message to all nodes—not wasting any

more than necessary. A high value of RMR indicates that a lot of redundant traffic

was generated and, therefore, a high amount of bandwidth was unnecessarily con-

sumed. Higher fanouts usually lead to higher RMR and lower fanouts usually lead

to lower RMR [17]. When using pure gossip (such as simple epidemic broadcast) to

disseminate a message, RMR tends to t − 1, t being the fanout [21].

Control messages (like the ones used on the pull gossip strategy) are not consid-

ered in this metric, i.e., they do not count towards the value of m. There are two

main reasons for this. The first one is the fact that control messages are usually

significantly smaller than the actual payload messages—otherwise we would not

13

CHAPTER 2. RELATED WORK

be using a communication mode that relies on control messages. Therefore, the

control messages do not have a substantial impact on the total generated traffic and,

consequently, can be ignored.

It is worth noting that it is easy to have a high reliability with a high RMR (by

having a very high fanout) and it is also easy to have a low reliability with a low

RMR (by having a very low fanout) [17]. Nevertheless, it is challenging to have a

high reliability with a low RMR—which is the ultimate goal. The challenge lies

on finding the fanout that provides the best balance (according to our priorities)

between a high-enough reliability and a low-enough RMR.

Last Delivery Hop (LDH) The last delivery hop metric [21] measures the maximum

number of hops performed by a delivered message, i.e., the maximum number of

nodes that a message went through before being delivered to the application layer.

This value is usually highly dependent of the network diameter, i.e., how wide the

network can be in terms of paths between nodes [21]. For example, in a network

where the shortest amount of links between two nodes is d, assuming an atomic

broadcast started by one of those nodes, the LDH of that broadcast will never be

smaller than d.

Latency The latency of an epidemic broadcast is given by the difference between the

time upon which the last process delivers the message and the time upon which

the first process (the original broadcaster) broadcasts the message [20]. Usually, we

strive for low latency. However, the obtained latency is not solely dependent on

the epidemic broadcast protocol—it is also dependent on the network itself (e.g.,

the latency between nodes, the node relative locations). If every path between the

nodes has the same latency (which is very unlikely in practice), we can compute the

broadcast latency by multiplying LDH by the link latency between two nodes (also

known as per node latency) [21].

2.4 Overlays

An overlay is a logical network on top of another network (e.g., the physical network). In

an overlay, nodes define (logical) neighboring relationships between them. These neigh-

boring relationships can be materialized as links. This set of links and nodes constitutes

an overlay, which can be seen as a graph, composed of nodes and links established be-

tween them. This overlay is then used by applications or services to propagate messages

between the nodes. The set of neighbors of each node (i.e., the nodes to whom a node

shares an overlay link with) is called the partial view of the node [20]. In other words, the

partial view of a node n can be seen as the set of nodes that are known by n.

An overlay (or graph) can either be undirected or directed, i.e., having asymmetric

links or exclusively symmetric links, respectively. In a symmetric overlay, if node a

14

2.4. OVERLAYS

has node b in its partial view (i.e., as neighbor), then node b has node a in its partial

view. When using symmetric views, a node is always sure of the nodes that have him as

neighbor and that can be useful in some cases. For example, if the overlay is symmetric

and a node’s partial view is not empty, then that node is sure that is not disconnected

from the network, i.e., that other nodes have it in their partial views. However, symmetric

partial views are usually harder and costlier to maintain.

Contrarily to using a partial view, we could use a global view membership system.

This would mean that each node would know every single node in the network [9]. Using

this strategy, we would not need an overlay, since all nodes could interact with every

other node (as long as they were connected to the physical network). That raises the

question: why bother with creating and managing an overlay when we can have all nodes

communicating with all other nodes? The answer is simple—when we are dealing with

a large system (i.e., a system with a very high number of nodes), the set of nodes in the

system is not static. Large systems are often dynamic because processes might be added

at all times (to deal with additional load, for example) and other processes might leave

the system anytime (e.g., if they crash). If every node (i.e., process) contains a global

membership, that would mean that that node would have to keep up with every addition

and removal to the system—which might not be realistic, because nodes can be far away

from each other (thereby presenting high latencies) and that would lead to unacceptably

high bookkeeping costs [23]. This could easily result in network saturation and total

system inoperability.

There are a number of proprieties that overlays must own in order to support a high

level of fault tolerance and fast message dissemination, i.e., for epidemic broadcast to

be effectively implemented on top of them. These proprieties are useful to ensure the

correctness of the overlay (when it comes to connectivity and accuracy) but also to mea-

sure the quality of the partial views—in terms of fault tolerance, message dissemination

efficiency, etc. The most relevant of these proprieties are:

Connectivity The connectivity of an overlay indicates whether all nodes in the network

are connected, i.e., if there is a path between every correct node a to every correct

node b. For an overlay to be correct, it has to be connected. In other words, no node

can be isolated from the other nodes. If a network is not connected, some nodes

will not be able to communicate with the remaining elements of the system [21].

Accuracy The accuracy of a node is given by the number of correct nodes in its partial

view divided by the total number of nodes in its partial view [18]. By correct, we

mean nodes that did not fail, i.e., that are running. Optimally, we would want that

partial views would have an accuracy of 1 (100%) at all times, but that is obviously

impossible because nodes can crash and the partial views of the nodes that had

those as neighbors take some time to identify such failure events. Therefore, we

aim to have an accuracy as close to 1 as possible. The accuracy of an overlay (or

graph) is defined by the average of the accuracies of all the correct nodes in it [18].

15

CHAPTER 2. RELATED WORK

For an overlay to be correct, its accuracy has to eventually be equal to 1 (if no nodes

are removed nor added for some amount of time).

Having a high overlay accuracy is very important for epidemic dissemination. If

the accuracy is low, it means that nodes have a lot of faulty nodes in their partial

views and when disseminating a message to t random neighbors, some of those t

nodes will not contribute to the effective dissemination of the message, decreasing

the broadcast reliability (unless we use a higher t in order to mask this issue) [21].

Degree Distribution The out-degree of a node is given by the number of nodes that are

present in its partial view [21], i.e, its number of neighbors. The in-degree of a node

is given by the number of nodes that have that node as neighbor [21].

The out-degree of a node is useful to infer the node’s contribution to the membership

protocol, i.e., how important that node is in maintaining the overlay connected [21].

For example, a node with an out-degree of three is less relevant in maintaining the

overlay than a node with an out-degree of ten, because it has the responsibility of

managing and disseminating the messages to more nodes. If a node with a high out-
degree crashes, it has an increased probability of affecting overall overlay proprieties

such as the connectivity.

The in-degree of a node evidences how well known a node is in the network. It

also has a direct correlation with the number of redundant messages that that node

might receive—a higher in-degree results in a higher probability of that node re-

ceiving a high number of redundant messages [21], when messages are being broad-

casted through the overlay network.

In the case of a homogeneous network (i.e., a network where all nodes have the same

resources and links possess the same proprieties), all processes should have a simi-

lar number of out-degree (and in-degree), so that the traffic load is well distributed

between them [18]. It is also worth mentioning that in a symmetric graph/overlay,

a node’s in-degree is equal to its out-degree.

Average Path Length A path from node a to node b is the composed by the edges that a

message goes through to travel from a to b. The length of the path from a to b is

given by the number of such edges. The average path length of an overlay/graph is

equal to the average of the shortest paths between all pairs of different nodes in the

overlay1. The average path length should be low, so that a message does not have to

pass through a lot of nodes in order to reach its destination, which adds latency [18].

This metric is closely related to the overlay diameter [21]—a wider network results

in messages having to go through numerous edges to go from one side to the other

of the overlay.

1This propriety is only worth measuring if the network is connected. Otherwise, at least one node will
have an infinite shortest path length to all other nodes—which will result in an infinite average path length,
by definition.

16

2.4. OVERLAYS

Clustering Coefficient The clustering coefficient of a node is equal to the number of

edges between that node and its neighbors divided by the total number of possible

edges between all of them [18]. It results in a number between zero and one. A

clustering coefficient close to one means that a node shares a lot of the same neigh-

bors with its neighbors. The clustering coefficient of the graph/overlay is equal

to the average of the clustering coefficients of all nodes. An overlay with a high

clustering coefficient is bad for two reasons: i) it will produce more redundant mes-

sages for nodes, since they have essentially the same neighbors as their neighbors;

ii) it lowers the fault tolerance of the overlay because if most of the nodes share the

same neighbors as their neighbors, then those nodes do not have a lot of neighbors

outside their clusters, which means that the inter-cluster links are scarce—if they

are broken, the overlay can more likely become disconnected. Moreover, a high

clustering coefficient usually results on a high average path length [21], which is

usually an undesirable propriety.

As mentioned in Section 2.1.2, the membership layer is responsible for managing the

partial view. This partial view has to be frequently updated so that the nodes that left

the network are removed from it (to improve accuracy) and the nodes that entered the

network become known by (some) other nodes.

Overlay networks can be divided in two groups: structured and unstructured. They

both have different characteristics and have been employed for different use-cases. In the

following sections we are going to delve into them.

2.4.1 Structured Overlays

Even though this dissertation focuses on unstructured overlays, it is worth discussing

structured ones. A structured overlay is an overlay whose topology has proprieties known

a priori [20]. Each node in the overlay is usually identified by a unique identifier. The

neighbors of a node are defined (at least partially) considering the identifier of nodes, such

that the overlay topology has a global organization that can be exploited. For instance,

Chord [34] structures nodes in a ring where they are organized in increasing order of

their identifiers (assuming that the identifier space is circular). This ring topology is

then exploited to easily navigate the overlay to locate particular nodes considering their

identifiers.

Knowing some topology proprieties allows us to implement mechanisms that operate

on top of the overlay in a much more efficient way. Thereby, we can use structured

overlays to implement specific abstractions and functionalities more efficiently than with

unstructured ones [34].

One example of a problem that can be very efficiently solved with a structured overlay

is the exact location problem [20]. This problem can be defined informally as finding an

object (i.e., a resource, such as a file) by its unique ID. If we used an unstructured network,

we would be blindly searching for the object across random nodes. However, with a

17

CHAPTER 2. RELATED WORK

structured network, we can take advantage of a scheme to attribute the responsibility

of hosting that resource to a particular node, and then find it faster and more efficiently,

i.e., with fewer messages. This can be done by hosting each object in the nodes (or node)

whose identifiers are closest to the object ID.

On the other hand, structured overlay networks have an important drawback, which

is the slower convergence when compared to unstructured overlays. Due to having a strict

structure, structured overlays are not as flexible when membership changes happen, since

nodes that join or leave the network trigger a mandatory restructuring of the overlay for

it to enforce its topological proprieties [20]. Besides this, structured overlays are not as

fault tolerant as unstructured overlays—a node can quickly become isolated if a relevant

part of its neighbors crash [20]. However, most implementations try to minimize these

problems (specially the lack of fault tolerance) with some algorithm tweaks, as we are

going to discern below.

There are many protocols to build and manage a structured overlay. Chord [34] and

Kademlia [26] are two of the most well known, which we will discern in more detail.

2.4.1.1 Chord

The Chord [34] protocol main functionality is—given an object identifier, find the node re-

sponsible for managing that object. To achieve this, Chord structures nodes in a ring–like

topology, each node being responsible for an interval of object identifiers. Each of the

nodes has a unique ID, and they are organized based on that ID. Each node is responsible

for the data objects whose identifiers fall in the interval between that node’s predecessor

on the ring and its own identifier.

A simple and naive routing solution would be for each node to have the next node in

the ring in its view (i.e., node nwould know the IP address and port of successor(n)). That

way, each node would only know one other node (its successor). Hence, whenever a node

would receive an operation to find an object with a specific identifier, it would check if

that node was the one that managed it, and if it was not, it would send the operation to

its successor. When the message finally arrived to the node that manages the object, that

node would reply to the client.

Chord proposes a more complex routing solution in order to deal with the fault tol-

erance and efficiency problems generated by the simple solution above. Essentially, it

works by each node n maintaining in its view a set of nodes whose IDs are neighID =

n+ 2i−1 ∧ i > 0∧ neighID < maxID, neighID being the ID of neighbor and maxID being

the maximum possible identifier. In this solution, in case the node receiving the search

query has in its view a node with ID equal to the identifier being searched, it redirects the

query to that node. Otherwise, the node receiving the search query redirects that query

to the successor of the known closest preceding node of the node that manages the object.

Effectively, this halves the distance to the target node at each routing step.

With this solution, each node stores information aboutm nodes when the total number

18

2.4. OVERLAYS

of nodes in the network is 2m. This number is not very high, as it increases logarithmi-

cally with the total number of nodes in the overlay. However, it is high enough to make

the overlay robust against nodes failing and broken links. The fact that each node has

neighbors well spread through the overlay also helps with quickly locating the searched

objects (since a low number of hops is often sufficient to find the node that manages the

target object).

It is also worth mentioning that Chord proposes a periodical stabilization process with

the goal of converging the overlay in case nodes recently joined or left the network. In

this process, nodes update their successors and predecessors in order to match the correct

structure of the overlay. This cyclic stabilization process presents a trade-off between

spending a lot of bandwidth (by doing very frequent stabilization processes) to have a

correct overlay at (almost) all times or spending little bandwidth and risk having an often

inconsistent overlay.

2.4.1.2 Kademlia

Kademlia [26] is a protocol that builds and maintains a structured overlay that is widely

used. Although the number of expected hops for each search query is O(log(n)) (similar

to Chord), Kademlia presents some clear advantages when compared to Chord. Some of

these advantages are the fact that configuration information spreads automatically as a

side effect of search queries. Besides that, Kademlia uses parallel asynchronous search

queries in order to be fault-tolerant to nodes that have possibly crashed mid-execution.

This protocol has a lot of optimizations compared to simpler protocols (like Chord),

but perhaps the most important one is that fact that it uses an XOR metric to measure

distances between nodes. Because of that, Kademlia is able to use symmetric links be-

tween the nodes, which leads to a greater flexibility on the search queries redirection

because—unlike Chord—Kademlia can redirect the search query to any node that is close

to the node that should have the object. In fact, it can even redirect the search query to

multiple appropriate nodes in parallel. This concurrency can be controlled by a concur-

rency parameter α that trades-off low bandwidth usage for low-latency and increased

fault-tolerance.

2.4.2 Unstructured Overlays

An unstructured overlay is an overlay where the neighbors that each node has are selected

at random [20]. Therefore, unlike structured overlays, an unstructured overlay has a

random topology, i.e., we cannot infer proprieties about the topology of the overlay before

it is actually built.

This type of overlay has a lower maintenance cost than structured overlays because

there is no structure to be enforced [20]. Besides that, they tend to have better fault

tolerance than structured overlays (as explained thoroughly in Section 2.4.1), mainly due

to the fact that no strong topological proprieties have to be maintained when a node

19

CHAPTER 2. RELATED WORK

updates its partial view, i.e., any node can have any random node in its view, unlike

structured overlays, where each node has to have a very specific set of nodes in its partial

view.

Due to its dynamic and low-cost adaptability and high tolerance to failures, unstruc-

tured overlays are useful for message dissemination (e.g., epidemic broadcast) [7]. They

are also useful for replication of data across numerous nodes [24]. Another use case is

system monitoring, where nodes monitor each other (e.g., their load, if they have not

crashed) [36]. A different problem where using unstructured overlays is useful is the

(generic) resource location problem, where a node has to find some resource in the net-

work (e.g., files) matching a given set of proprieties (e.g., size >= 256) [24]. These are

all problems where unstructured overlays are highly advisable (instead of structured

ones) because solving these problems would not benefit from an existing structure, i.e.,

a structured overlay does not make solutions to these problems much more effective or

efficient.

When it comes to building unstructured overlays, there are two strategies: cyclic

and reactive. A cyclic strategy uses periodic timers to shuffle the partial views of nodes

between them [20]. From the point of view of a node, it sets a periodic timer t and then

every t units of time it will perform an operation where its neighbors may change (and

it may also lead to updating the contents of some of its neighbors’ partial view). This

strategy is called cyclic because the only trigger for maintaining the overlay is given by

periodic (i.e., cyclic) actions, i.e., it is not reactive upon some other event (like nodes

joining the network).

2.4.2.1 Cyclon

Cyclon [36] is a cyclic, gossip-based membership management protocol (also named as

peer-sampling protocol) that builds graphs (i.e., overlays) with low diameter, low clus-

tering, highly symmetric node out-degrees, and that are highly resilient to massive node

failures. The protocol is also capable of restoring randomness when numerous nodes

fail, specially when compared to other (simpler) shuffling protocols. In [36], the authors

presented an experimental analysis of a basic shuffling protocol for large networks (to

demonstrate that shuffling is indeed a promising technique to build these protocols), and

then presented an enhanced version of that basic shuffling protocol—Cyclon.

Cyclon employs an enhanced version of shuffling. Shuffling consists on (generally)

two nodes switching neighbors between themselves, so that at the end of the shuffle

operation, they both end up with a different partial view than they had when they started

it. The number of neighbors shuffled by each node is called the shuffle length. Enhanced

shuffling follows the same model as basic shuffling, with the difference that nodes do not

randomly choose which neighbor to shuffle views with. Instead, upon shuffling, each

node selects the neighbor whose identifier was created earliest. This is achieved by every

node having, in its view, not only a list of nodes, but, instead, a list of pairs (node, age).

20

2.4. OVERLAYS

This way, each time a node shuffles, it increases the age of each neighbor and chooses the

neighbor with the highest age to shuffle with (instead of a random one). Note that the age

of an identifier is left unchanged when an identifier is sent to a peer during the shuffle.

The other difference between Cyclon and basic shuffling protocols is in the join operation.

Cyclon implements a sophisticated way of a node joining a network by only knowing one

neighbor (contact node) without disrupting the randomness of the network, which is key

to maintain the proprieties of unstructured overlays (such as high fault-tolerance).

In [36], the authors suggested a time interval between shuffles of 10s. However, for

some applications, this might be too long, since the network can take minutes to recuper-

ate from node failures (depending on the number of nodes that failed). That said, there is

clear correlation between the bandwidth used and the speed of the protocol to detect and

act upon failures. This trade-off between low-bandwidth usage and fast recovery might

be one of the biggest draw-backs of this algorithm. This happens because the algorithm

is exclusively cyclic, having no reactive strategy to failed nodes.

2.4.2.2 SCAMP

Unlike Cyclon, SCAMP [9] is a reactive gossip-based membership management protocol.

A reactive strategy changes the membership of nodes in the overlay every time specific

events are triggered—like nodes joining or leaving the network, instead of using periodic

behaviors. SCAMP is also self-organizing, meaning that the size of the partial views is

dynamically and locally adapted according to the number of nodes in the system, as to

ensure reliability in large scale settings.

SCAMP works by having each new neighbor sending a subscription (i.e., presenting

itself) to an arbitrary node that it already knows (contact node). This means that a node

that enters the system starts with one node in its (partial) view. The node that receives the

subscription, forwards it to all nodes on its partial view and then sends the subscription

again to more c nodes of its partial view (c being a design parameter that determines the

proportion of failures tolerated). When a node receives a forwarded subscription, it adds

the subscriber to its partial view (if it is not already there) with a probability computed

based on the number nodes already on its view. Else, it forwards the subscription to

one of its existing neighbors. This probability makes the system configure itself towards

(partial) views of average size (c + 1) ∗ log(n), n being the total number of nodes in the

system.

For failure detection, the protocol suggests two different techniques (that can be used

simultaneously). The first one is for each node to save a different view (in-view) that

contains the set of nodes that have that node in their partial views. That way, each node

knows which nodes have it as neighbor. Then, when a node wants to leave the system, it

just has to send a leave message to all nodes in its in-view. When a node receives a leave
message, it removes the sender of the message from its view. The second technique is

aimed to solve the problem of nodes that crash without warning (i.e., without sending the

21

CHAPTER 2. RELATED WORK

leave messages). In this technique, nodes periodically send a heart-beat message to their

neighbors in order to make sure that they are still alive. If a node does not answer the

heart-beat for x times in a row, it is removed from the partial view of the node that sent

the heart-beat. Both of these techniques are effective ways of maintaining a high overlay

accuracy.

Besides being proven mathematically, the algorithm was also tested against a full

membership protocol system in [9]. Using SCAMP, the view size of each node converged

to an average size of (c+ 1) ∗ log(n). Because of this, when using the gossip algorithm with

SCAMP, the fanout should be equal to the partial view size of each node, since a fanout

>= log(n) is necessary to achieve reliability. In terms of resilience to failures, SCAMP

proved to be very reliable, with results very close to global membership knowledge—even

when almost half of the nodes failed.

On the other hand, Scamp presents a significant limitation—if a node was the last one

to enter the system (and no nodes enter the system after it), it will ever only know one

other node, i.e., its (partial) view size will be 1 forever. Even if a node was not the last

one to enter, it can stay with a low view size for a long time if not many nodes enter the

system right after it did, specially if the nodes that enter the system after that node do not

choose a contact node nearby it. This means that this algorithm works well only if a lot

of nodes are always entering/exiting the system. This happens due to the reactive nature

of the algorithm—if there are no external changes to the overlay (i.e., no nodes joining

or leaving) then the overlay will not change. Cyclon does not have this problem because

no matter how many nodes enter or leave the network, it will always shuffle neighbors

periodically.

2.4.2.3 HyParView

HyParView [18] is a membership protocol that supports gossip-based broadcast, which

ensures high levels of reliability even when the rates of node failure are very high. This

protocol uses two distinct partial views to ensure that high reliability is achieved, even

when using a lower-than-average fanout size on the gossip protocol being used on top of

it.

Many membership protocols with healing properties see the reliability of message

broadcasts be seriously affected after heavy failures [18]. Even for protocols that are able

to totally recover, it takes a long time to restore their desirable view properties when a very

high number of nodes fail [18]. Furthermore, when using usual membership protocols,

we often have to use high fanouts if we want to achieve high reliability, due to the lack of

fault tolerance of these protocols [18]. HyParView claims to solve these problems.

The protocol works as follows. Each node maintains two views: i) small symmetric

active view of size t+1, t being the fanout used in the upper (service) layer for the epidemic

broadcast; ii) a bigger passive view of backup nodes that can be promoted to the active

view when one of the nodes in the active view fails. Failures are detected using TCP as an

22

2.4. OVERLAYS

(unreliable) fault detector. The active view is maintained reactively and the passive view

is maintained cyclically (by performing shuffles with other nodes, like Cyclon). When a

node sends to its neighbor a set of nodes to be shuffled, it includes in the set some nodes

from its active view as well. This is done to increase the probability of nodes having

passive views with active nodes. By using these two views and TCP as a reliable transport,

it is possible to use smaller fanouts, while maintaining a very high reliability, resulting in

more cost-effective gossip protocols. Moreover, by using TCP as a reliable fault detector,

this membership protocol has fast healing properties, quickly recovering from a high

number of failures.

On a negative note, a lot of messages are used to maintain symmetric views (at least

two times the number of needed messages to maintain asymmetric views). This might

cause some unnecessary overhead. On the other hand, since the protocol provides us

with the capability of using smaller epidemic broadcast fanouts (while providing the

same levels of reliability), perhaps the number of messages spent to guarantee symmetric

views ends up compensating the number of messages saved on the service layer (due to

the lower fanout)—which is likely—specially if the overlay is fairly stable (i.e., if it has

low churn2).

2.4.3 How to Adjust/Bias the Network Topology

Unstructured overlay networks—while being highly reliable and adaptable—can have

performance caveats due to the randomness of the links that are established between

the nodes [20]. This means that some connections between nodes might end up being

inefficient (in terms of latency or other metrics) and that is not good, because it leads to

an undesirable impact on the network efficiency. This is the problem that T-Man [11]

and X-Bot [19] try to solve—how to optimize these networks, while maintaining some key

proprieties.

Both of these protocols bias the topology of unstructured overlays according to some

chosen criterion. The protocols are agnostic to the criterion chosen, i.e., any criterion can

be used as long as it allows nodes to rank other nodes (in the case of T-Man) or links (in

the case of X-Bot) based on it.

2.4.3.1 T-Man

T-Man [11] is an algorithm that can be applied on top of a random graph in order to

bias its topology according to some criterion. Therefore, T-Man is capable of emerging

structure out of a random graph, i.e., out of a pure unstructured overlay.

The protocol operates between the membership layer and the service layer, i.e., it uses

the membership layer, and it presents itself as the membership layer to the service layer

2Churn is defined by the frequency to which nodes join and leave the network/overlay. An overlay with
high churn is an overlay with a lot of nodes frequently joining and leaving, while an overlay with low churn
is a stable overlay where nodes join and leave infrequently.

23

CHAPTER 2. RELATED WORK

above. It runs cyclically. Every time interval t, each process picks the highest ranked node

from its view (according to the ranking function/criterion provided) and sends to that

node a set of nodes that includes its current view, itself and a sample from the random

view on the membership layer. When a process receives a set of nodes, first, it replies

with a set containing its current view, itself and a sample from the random view on the

membership layer. Then it merges the received set with its own view. So that each process

has always c nodes in its view, the merge operation merges both sets based on the ranking

function, i.e., it ranks the nodes from both sets and chooses the highest ranked c nodes.

T-Man also proposes some optimizations to the solution described above. One of

them is to forbid each node to communicate (in the context of T-Man) more than twice

per interval t. That way, if a node tries to communicate with other that currently cannot

communicate, it skips that node and tries with the next one. The authors in [11] affirm

that this technique strikingly improves the convergence speed of T-Man.

Another proposed optimization is to reduce the payload of messages sent between

nodes. This can be achieved by reducing the number of nodes sent in messages through

inferring what nodes would definitely be discarded by the receiver of the set.

The periodic optimization of each node’s views by applying the T-Man protocol makes

the network topology more efficient (according to the criterion/ranking function used)

over time. In [11], the authors construct a torus out of a random graph with 2500 nodes in

just 15 cycles (with a view size of 20)—which is remarkable. On the other hand, although

T-Man ensures that the topology of the overlay improves in a fast manner, it does so at

the risk of allowing the topology to break (and the overlay to lose some of its desired

proprieties) [4].

2.4.3.2 X-Bot

The goal X-Bot [19] is to optimize the overlay by minimizing the cost of the links between

the nodes, while striving to maintain the same number of links as the original overlay

network. The link cost function is parameterized and encapsulated in a companion oracle.

X-Bot allows us to use any efficiency criteria X, i.e., we can choose the oracle that we

want for the costs of the links between neighbors. This means that we can choose latency

as our cost indicator or any other characteristic of the path (like distance, monetary cost

of infrastructure, etc.)—X-Bot is completely agnostic to the oracle. Besides this, X-Bot

preserves several key proprieties of the overlay, like a low clustering coefficient and low

overlay diameter.

The protocol is decentralized and relies on a 4-node coordinated optimization tech-

nique in order for those 4 nodes to switch links between them so that the least link cost

is achieved. By always switching links between 4 nodes, the algorithm makes sure that

most node degrees remain the same. This switch is made periodically, making sure that

the overlay never stabilizes at some local minimum. In this technique, each node starts

optimization rounds in which it tries to switch one node of its active view with one

24

2.5. ADDRESSING HETEROGENEITY IN UNSTRUCTURED OVERLAYS

(better) node in its passive view, and that node communicates with another node that

communicates with another node. To avoid breaking some key proprieties of the overlay

network (like the low clustering coefficient, low average path length, or connectivity),

the algorithm keeps some unbiased neighbors that it never tries to switch/bias. These

“unbiased neighbors” should be the y neighbors with the “highest-cost” in each node’s

initial partial view, y being a parameter.

This protocol was tested and compared with T-Man, Araneola [27] and GoCast [35],

which are other protocols that try to bias the network in any way to achieve better ef-

ficiency. Two testing scenarios were used: Cartesian scenario and Planet-Lab scenario.

The oracle used measured latency between links (as cost). X-Bot managed to have the

lowest latency in a Cartesian scenario while maintaining a reliability of 100%. In the

Planet-Lab scenario, X-Bot had the 2nd lowest latency, but T-Man—that achieved the

lowest latency—presented a reliability of 16%, while X-Bot maintained a reliability of

100%.

2.5 Addressing Heterogeneity in Unstructured Overlays

All the protocols presented above—either for building and maintaining unstructured

overlays or for biasing their topology—assume that the network is homogeneous, i.e.,

they assume that every node (and many times link) have similar resources. However, in

real world scenarios that is not true—specially in the edge [4]—where we can have very

powerful machines (e.g., datacenter servers) and very weak machines (i.e., machines with

low resources), such as IoT devices, smartphones, etc.

For this reason, in most real-world scenarios, it is not wise to evenly distribute load on

the nodes and network links, since they are heterogeneous in nature, which would make

some nodes be extremely saturated with work while others would be operating below

their capacities. This leads to low performance on services, resulting in high latency

(due to some saturated nodes, for example) and poor bandwidth allocation [3]. Therefore,

there are some techniques (i.e., protocols/algorithms) that aim to tackle this problem.

There are a lot of ways to tackle resource heterogeneity. Some solutions aim at solving

the heterogeneity problem at the service layer by optimizing epidemic broadcast (or other

gossip) algorithms for heterogeneous networks. Other solutions tackle the problem at the

membership layer by trying to optimize the overlay for heterogeneity so that when some

service (like epidemic broadcast) uses it, it benefits from the already optimized overlay.

The main goal of the protocols and algorithms that aim at addressing the resource

heterogeneity in unstructured overlays is usually to minimize latency. This is because it

is the metric that often has the bigger impact in a real world scenario [4]. Besides that,

by optimizing latency we are also indirectly optimizing other metrics—like bandwidth,

distance between nodes, etc. For example, if an algorithm strives to achieve low latency,

it will probably do so by fairly distributing bandwidth among resources. There are also

solutions that—instead of trying to optimize latency—have parameterized optimization

25

CHAPTER 2. RELATED WORK

functions that allow us to directly optimize whatever metric/aspect we want (including

machine operation cost, for example).

2.5.1 Tackling Heterogeneity at the Service Layer

As mentioned above, there are several solutions that try to optimize services for heteroge-

neous resources. In this case, we are interested in protocols that adapt epidemic broadcast

for heterogeneous settings. Some solutions are presented below.

2.5.1.1 Emergent Structure in Unstructured Epidemic Multicast

The work presented in [3, 30] proposes a probabilistic broadcast protocol (commonly

named adaptive gossip) for heterogeneous networks. The protocol works by lazily de-

ferring message transmission according to a configurable policy. It combines two push

gossip communication modes (eager and lazy) in an epidemic broadcast protocol.

The proposed gossip algorithm mixes eager and lazy push. In summary, before a

node broadcasts a message, it runs a split function that—depending on the sender, the

neighbors to which the message is being sent, and the message itself—decides to which

neighbors the message should be sent via eager push and to which neighbors the message

should be sent via lazy push. For example, if node a was going to broadcast message m

to nodes {b,c,d,e, f }, it would first run a split function that would return something like

{eager : {c,e}, pull : {b,d,f }}; then, node a would send m via eager push to {c,e} and via

lazy push to {b,d,f }. It is worth noting that the broadcasting fanout (t) of node a does not

change, since the function split always returns two sets (x and y), in which |x|+ |y| = |t|
and x∩ y = ∅.

Being the goal of the protocol to achieve the best balance between lazy push and

eager push communication modes, the authors in [3] presented 4 different strategies to

implement the split function: i) deciding lazy/eager push based on a probability; ii)

deciding lazy/eager push based on the number of hops that a message has traveled; iii)

deciding lazy/eager push based on the radius between the sender and receiver nodes; iv)

deciding lazy/eager push based on whether the sending node is one of the super-nodes

(i.e., most powerful nodes) or not. The protocol uses monitors in order to extract the

metrics necessary for using the strategies above. The authors in [3] suggest that hybrid

strategies (mix-ups between the 4 alternatives above) are possible and recommended

(depending on the case).

By testing adaptive gossip using a hybrid strategy, the authors in [3] have shown

that by scheduling the transmission of payload in a combined eager/lazy push epidemic

broadcast protocol, one can reduce the bandwidth while keeping a low latency. In terms

of reliability, the tests confirmed that the proposed protocol does not impact reliability

(compared to the normal gossip protocol). They also tested inputting noise in the metrics

obtained by the monitors, and even in the worst case (when noise was the highest), the

worst thing that happened was that the lazy push mode was used all the time or that the

26

2.5. ADDRESSING HETEROGENEITY IN UNSTRUCTURED OVERLAYS

eager push mode was used all the time. Also, note that even though the best results are

achieved when all the nodes run the same strategy, correctness is still assured if they do

not.

2.5.1.2 Low Latency Probabilistic Broadcast in Wide Area Networks

The work presented in [29] proposes a probabilistic broadcast protocol (i.e., a variant

of epidemic broadcast) for heterogeneous networks that reduces the average end-to-end

latency by dynamically adapting to the network topology and traffic conditions. It works

by ensuring that a virtual backbone-like node structure of faster nodes is created, so

that when a message is first sent, the protocol tries to route it first to the faster nodes

which will then use all their available bandwidth to quickly and reliably disseminate the

message to the remaining nodes.

The protocol is based on epidemic broadcast, but with two differences in the first

w rounds of a message being forwarded among nodes. This means that the protocol is

slightly different from the classical epidemic broadcast in the first w rounds, and then

it adopts an equivalent behavior to it from round w+ 1 until the message is delivered to

every node. The two main differences (in the first w rounds) are: i) each node broadcasts

to a fanout tm, which is greater or equal to t (log(n), with n being the total number of

nodes)—that depends on the node’s capacity; ii) each node broadcasts to a non-random

set of nodes, which is generated based on the latency as perceived by the sender, their

advertised bandwidth, and the sender’s bandwidth. This technique results in the more

powerful nodes receiving (and therefore sending) more messages, while the less powerful

nodes receive (and send) fewer messages. Note that, although the function to extract the

non-random set of nodes to broadcast probabilistically chooses more powerful nodes, it

also chooses some weak nodes—to make sure that every node has a high probability of

receiving the message.

The reported experiments in [29] proved that this approach effectively reduces the

latency of the dissemination protocol, not only in heterogeneous environments, but also

when the system is subject to high load. Another positive aspect of the protocol is that,

by limiting the node selection bias to the early (w) rounds of the gossip procedure, the

authors effectively prevent this mechanism from affecting the overall reliability of the

broadcast. According to the experiments, this was proved true even when the network is

homogeneous.

On a negative note, the authors claim that each node would obtain the estimated

(bandwidth) resources of its neighbors through the membership protocol being used. If

so, then that means that the membership layer has to be modified to accommodate this

operation (to send each neighbor’s resources), which results in this protocol not being

able to be used with existing membership solutions—unless they are adapted. Adapting

the current membership protocol solutions to work with this broadcast protocol would

add overhead to the membership protocols. That said, since we would need to adapt the

27

CHAPTER 2. RELATED WORK

membership protocol anyway, it would be more effective to solve the whole problem on

the membership layer, i.e., make the membership layer responsible for constructing the

optimized overlay considering the heterogeneous capacity of nodes, so that the broad-

cast layer could just receive the (already partially-biased set of) neighbors and simply

broadcast to them.

2.5.2 Tackling Heterogeneity on the Membership Layer

We have presented solutions that tackle the resource heterogeneity problem on the service

layer (through adapting epidemic broadcast to heterogeneous resources). However, that

is not the only (nor possibly the best) way to address the resource heterogeneity problem.

Another interesting alternative is to address the challenges imposed by heterogeneity

in the membership layer. By doing so, we are providing more flexibility to the services

being implemented because the services just have to use the membership layer as before,

with no change to the service internal logic. In practice, this means that we could use the

same services as before on top of the already optimized overlay. Besides that, optimizing

the overlay for heterogeneity (in the membership layer) is often cheaper than addressing

the problem in the service layer because the service layer would have to gather data

from the other nodes either through the membership protocol or through extra messages

exchanged between nodes (in order to have a view of the network, similar to what the

work reported in [29] does). Directly changing the overlay also lets us have more precision

on the process, by biasing its topology in exactly the way we want—leading to a greater

effectiveness in achieving the desired results.

We thereby present two solutions that bias/change the topology of the overlay in order

to deal with resource heterogeneity.

2.5.2.1 Unstructured Overlays Based on Super-peers

In an unstructured overlay we can have specific nodes denominated super-peers [2]. These

nodes are more powerful than average. They form an overlay between them. Hence,

super-peers end up participating in two overlays: the general unstructured overlay (that

all nodes participate in) and on an overlay made up only of super-peers.

The super-peer nodes can then be used to propagate more information than the other

(non super-peer, i.e., regular) nodes, since they are more powerful. For a broadcast

service, we could first disseminate the message between super-peers, and then they would

disseminate the message to the regular nodes. This way, we would not saturate the

network because of less powerful nodes having to propagate the message to many nodes.

This strategy is particularly useful for search query dissemination in unstructured

overlays [2]. Regular processes connect to a super-peer and transmit to it the index of

their resources. Search queries are then forwarded to the (closest) super-peer and then

disseminated among super-peers to find the owner of the resource being queried.

28

2.5. ADDRESSING HETEROGENEITY IN UNSTRUCTURED OVERLAYS

There are some challenges with using super-peers, however. One huge difficulty is

to find out which processes should be super-peers. Since processes/nodes do not have

a global view of the network, they do not know if they are more powerful than average

or not, i.e., since each node can only see the surrounding nodes, it can be easily fooled

if it happens to be in an area with a lot of powerful nodes or a lot of weak nodes. For

example, if a node has a lot of weak nodes around it, it may think that it should be a

super-peer, when in reality that node is just an average node when considering the whole

system. Other (less critical) difficulty that can come up is what to do when a super-peer

fails—how can its connected regular nodes find another super-peer in a timely fashion.

2.5.2.2 Biased Layered Tree

Biased Layered Tree [4] is a novel, decentralized membership protocol which takes into

account the computational and network capacity available in each node, manually en-

coded in a numerical value associated with each node and a proximity criteria based on

IP prefix commonality. The protocol has the purpose of building a robust hierarchical

tree topology that connects and allows managing large numbers of nodes across the cloud

and edge.

The protocol assumes that each node contains a “level” value that is manually set.

This value indicates whether the node is closer to the cloud or closer to end-devices—and

consequently, it encodes whether the node has more or less resources (e.g., a node that has

a level 0 is a cloud server and has, therefore, a lot of resources, a node that has a level 4

might be a 5G tower and has moderate resources, and a node that has a level 8 might be a

smartphone and has few resources). The algorithm builds a tree–like structure, in which

the more powerful nodes are closer to the root and the less powerful nodes are closer to

leave positions. This hierarchy is achieved by using the levels. By using this tree–like

structure, the nodes with more resources will send/receive more messages and the nodes

with less resources will send/receive fewer messages, resulting in a higher efficiency and

faster broadcast, minimizing bottlenecks. The authors also try to make sure that nearby

devices end up being close to each other in the overlay structure by using the IP address

common prefix as a distance criterion, which also helps on minimizing latency. Despite

this, the resulting overlay structure is not a pure tree-structure since the protocol uses

some redundant links that make the overlay more robust to failures.

The solution (Bias Layered Tree) was tested in a real-world heterogeneous edge net-

work emulation alongside HyParView [18], X-Bot [19], Cyclon [36], and T-Man [11]. Bias

Layered Tree provided the lowest latency of all evaluated solutions, due to the structure of

the network, that positions nodes with higher capacity at higher points in the tree—which

allows to mitigate the queuing effect due to network saturation. It also proved to have a

reliability of 100% when no nodes failed.

On the other hand, when more than 25% of the nodes failed, Bias Layered Tree proved

to be less reliable than all the other solutions. This happens due to the structured nature

29

CHAPTER 2. RELATED WORK

of the overlay, which makes it less robust. Another negative aspect of the solution is

the fact that it uses IP address common prefixes as a distance criterion. This is not very

reliable, since modern ISPs networks have access to pools of IP addresses that have small

common prefixes [8].

2.6 Discussion

Most of the work outlined in the course of this chapter is going to be useful in the de-

velopment of our overlay and gossip protocol(s). Specifically, we can implement the first

iterations of the gossip protocols based on already developed solutions that are optimized

for heterogeneity, like the ones explained in Section 2.5.1.1 and 2.5.1.2.

When it comes to the overlay construction and management, we covered many so-

lutions that can be helpful in different areas. On the membership management level,

traditional protocols like Cyclon [36] and Scamp [9] can provide important insights on

how to manage the overlay—both cyclically (in the case of Cyclon) and reactively (in

the case of Scamp). Moreover, the membership management protocols optimized for

heterogeneity (like Biased Layered Tree [4] and super-peer overlays [2]) can help us ad-

dress the problem of heterogeneity by directly managing the overlay. On another note,

solutions like T-Man [11] and X-Bot [19] can aid us in the direct manipulation and biasing

of neighbors—T-Man in a more aggressive way (due to being faster but can easily break

topology proprieties) and X-Bot in a safer manner.

2.7 Summary

In this chapter, we began by explaining the concepts needed to understand the following

work. We started by describing the notion of peer-to-peer and what services can be im-

plemented with it, then we delved deeply into broadcast, focusing in epidemic broadcast.

After that, we explained the concept of overlays, the different types of overlays avail-

able, their advantages and disadvantages, the protocols that build (and maintain) them,

and two different algorithms for optimizing unstructured overlays. Having introduced

these concepts, we delved in the topic of addressing heterogeneity in unstructured over-

lays—both on the service and on the membership layer. Finally, we closed the chapter

with a discussion on the main challenges that we expect to face in the following work.

In conclusion, the available tools to tackle heterogeneity in unstructured overlays do

not suffice our goal—none of them directly adapts the number of neighbors of a node

according to its capacity relative to the network. We believe that we can, therefore, con-

tribute to optimizing heterogeneous networks by developing this previously unattempted

solution.

In the following chapter, we detail the specifications of the work that is going to be

conducted, including the challenges that we expect to face, our plans to experiment and

evaluate the produced work, and the schedule to achieve these tasks.

30

C
h
a
p
t
e
r

3
Future Work

As mentioned in Chapter 1, we plan to address the problem of resource heterogeneity

in edge computing by optimizing unstructured overlays. Therefore, in this work, we

are making three different contributions: i) the design and implementation of a novel

overlay; ii) the design and implementation of a set of support subsystems (i.e., gossip

protocols) that effectively exploit the benefits of the proposed overlay; iii) an experimental

comparison of our proposal with state of the art decentralized solutions.

In Section 3.1 of this chapter, we start by describing the overlay to be designed and

implemented, followed by the challenges that we expect to encounter in this process. We

then close this first section by explaining the challenge of building an adequate gossip

solution that will get the best out of the proposed overlay. In Section 3.2, we describe our

plans to evaluate the implemented solution and compare it with existing ones. Finally, in

Section 3.3, we establish the estimated schedule to accomplish the proposed work.

3.1 Proposed Solution

For the reasons mentioned in the beginning of Section 2.5.2 from the previous chapter,

we want to address the resource heterogeneity problem in the membership layer—by

directly manipulating the overlay. This dissertation focuses on doing so by manipulating

the number of neighbors of each node according to its resources. Until now, we have

found no solutions that did this. The closest approximation to this idea would be the

use of super-peers [2] or a protocol like Biased Layered Tree [4], knowing that both of

them do not explicitly change the number of neighbors of each node in order to tackle

heterogeneity.

However, so that we can address the heterogeneity problem by manipulating the

number of neighbors that each node has, we first have to conquer three obstacles. These

31

CHAPTER 3. FUTURE WORK

challenges are described below.

3.1.1 Inferring a Node’s Relative Capacity

The first challenge is on how to infer the capacity of a node in relation to the other nodes

in the network, i.e., how to know how powerful a node is if each node has only a partial

view of the full system.

There are a lot of solutions that can be explored in this context. One of them is the

dissemination of node resources on the network so that, if the network ends up mildly-

stabilizing, the nodes will have a big-enough panoply of node resources that can take

into account to know “where” in the resource-scale they are. However, this leads to two

problems: i) if there is a high-enough churn, this might not work because nodes will

always possess old data about the resources of the network; ii) it is not possible to know

exactly when a node has enough information to infer its position in the resource-spectrum

of the network, since it cannot know the exact number of nodes in the network at all times.

Although not trivial, one possible way to tackle these issues is to infer an approximation

to the total number of nodes in the network based on the observed churn variation.

A protocol akin to Vivaldi [5] might also help us in the endeavor of inferring a node’s

relative capacity (in relation to the other nodes). Vivaldi is a simple, decentralized,

lightweight algorithm that assigns synthetic coordinates to hosts such that the distance

between the hosts’ coordinates accurately predicts the latency between them. As it is de-

centralized, Vivaldi requires no fixed network infrastructure and/or distinguished hosts

to operate. Hence, Vivaldi allows predicting latency to other nodes without having to

first contact them. We can use an approach inspired by Vivaldi’s operation to map node

resources so that we know the resources of other nodes without having to first contact

them.

3.1.2 Adjusting the Number of Neighbors of a Node

Another key challenge that we are going to face is the fact that blindly changing the

number of neighbors of a node will likely negatively affect the topological proprieties of

the overlay. For example, if very resourceful nodes end up with a lot of neighbors and

their neighbors do not have many neighbors themselves, we are augmenting clustering,

which might have a negative impact on the robustness of the overlay, increasing the

possibilities of partitions. One possible solution to tackle the problem of clustering in

this example would be for every node to be aware of the neighbors of their neighbors. That

way, a node could use the knowledge about the neighbors of its neighbors to restrict some

neighboring relationships as to minimize the impact on clustering, and hence, protect

global connectivity.

Besides that, we have to find a way of manipulating the neighbors without lowering

the reliability of the epidemic broadcast (or other gossip-based solutions) operating on

32

3.2. EVALUATION

the service layer. A simple solution to that would be to set a minimum amount of neigh-

bors for each node (e.g., log(n), n being the order of magnitude of the number of nodes

expected to be in the system). Although simple and reliable, that might not be the most

effective solution (i.e., the one that provides the overall best performance condition for

services operating on top of the membership layer).

3.1.3 Building the Gossip Protocol

Lastly, the third challenge that we are faced with is—after having an overlay optimized

for heterogeneity—building an adequate epidemic broadcast-like solution that will get

the best out of our overlay. Since our goal is to make an efficient heterogeneity-friendly

overlay that will be used for message dissemination through gossip, we need to implement

a gossip-based solution that will illustrate the benefits of our overlay.

One possible solution would be to build a gossip algorithm inspired on adaptive

gossip [3] (explained in Section 2.5.1.1) where the split function would depend on the

number of neighbors of each node, i.e., the communication mode used would depend on

the number of neighbors of the node broadcasting the message. This solution could be a

starting point to build the gossip protocol to be used with the devised overlay.

3.2 Evaluation

To be able to show that our solution works as desired, we need to test it and compare it

with other alternatives. Therefore, we are going to perform an experimental comparison

of our proposal with state of the art decentralized solutions by combining both simulation

(in a platform similar to PeerSim [28], to observe the performance of the solution in huge

scale) and prototype deployments in realistic distributed infrastructures.

The experimental work will be partitioned into two phases. In the first phase, we will

evaluate the implemented overlay, comparing it with other optimized-for-heterogeneity

overlays. In the second phase, we will evaluate our full proposal (i.e., the implemented

gossip solution(s) optimized for heterogeneity on top of the previously tested overlay),

comparing it with other gossip algorithms optimized for heterogeneity.

3.2.1 Overlay Evaluation

In this phase, we are going to evaluate the devised overlay, comparing it with robust

unstructured overlays and other state-of-the-art overlays optimized for heterogeneity,

like Biased Layered Tree [4] and overlays based on super-peers [2]. To do so, we are

going to evaluate and compare the overlays based on the overlay proprieties explained

in Section 2.4 of the previous chapter. These proprieties include: connectivity, accuracy,

degree distribution, average path length, and clustering coefficient.

33

CHAPTER 3. FUTURE WORK

3.2.2 Full Proposal Evaluation

After evaluating and validating the proposed overlay, we can finally evaluate our full

proposal (i.e., the devised gossip protocol(s) running on top of the devised overlay) and

compare it with other gossip solutions optimized for heterogeneity, like Efficient Epidemic

Multicast in Heterogeneous Networks [30] and Low Latency Probabilistic Broadcast in

Wide Area Networks [29]. To perform such comparisons, we will use the performance

metrics explained in Section 2.3.2.2 of the previous chapter. These metrics include: relia-

bility, relative message redundancy, last delivery hop, and latency.

3.3 Schedule

Figure 3.1: Gantt chart with the expected work schedule.

In Figure 3.1, it is presented the expected work schedule. It is divided into four main

sections:

• Preliminary Solution Consists in the design, implementation and evaluation of a

preliminary solution of an overlay;

• Final Solution Consists in the design, implementation and evaluation of an overlay

solution and the gossip protocol(s) to be used with it;

• Final Evaluation & Optimization Consists in the incremental optimization and

evaluation of the final solution, as described in Section 3.2;

• Writing Consists in the writing of the thesis, as well as an article to be submitted

in a conference.

34

Bibliography

[1] J. Benet. IPFS - Content Addressed, Versioned, P2P File System. https://ipfs.io/

ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf.

2014. arXiv: 1407.3561 [cs.NI].

[2] B. Beverly Yang and H. Garcia-Molina. «Designing a super-peer network.» In: Pro-
ceedings 19th International Conference on Data Engineering (Cat. No.03CH37405).
2003, pp. 49–60. doi: 10.1109/ICDE.2003.1260781.

[3] N. Carvalho et al. «Emergent Structure in Unstructured Epidemic Multicast.» In:

37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN’07). 2007, pp. 481–490. doi: 10.1109/DSN.2007.40.

[4] P. A. Costa, P. Fouto, and J. Leitao. «Overlay Networks for Edge Management.» In:

2020 IEEE 19th International Symposium on Network Computing and Applications
(NCA). 2020, pp. 1–10. doi: 10.1109/NCA51143.2020.9306716.

[5] F. Dabek et al. «Vivaldi: A Decentralized Network Coordinate System.» In: SIG-
COMM Comput. Commun. Rev. 34.4 (Aug. 2004), 15–26. issn: 0146-4833. doi:

10.1145/1030194.1015471. url: https://doi.org/10.1145/1030194.1015471.

[6] C. Diot et al. «Deployment issues for the IP multicast service and architecture.» In:

IEEE Network 14.1 (2000), pp. 78–88. doi: 10.1109/65.819174.

[7] P. T. Eugster et al. «Epidemic information dissemination in distributed systems.»

In: Computer 37.5 (2004), pp. 60–67. doi: 10.1109/MC.2004.1297243.

[8] M. J. Freedman et al. «Geographic locality of IP prefixes.» In: Proceedings of the 5th
ACM SIGCOMM conference on Internet Measurement. 2005, pp. 13–13.

[9] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulié. «Scamp: Peer-to-Peer Lightweight

Membership Service for Large-Scale Group Communication.» In: Networked Group
Communication. Ed. by J. Crowcroft and M. Hofmann. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001, pp. 44–55. isbn: 978-3-540-45546-2.

[10] R. M. (IBM). How cloud, fog, and mist computing can work together. https://

developer.ibm.com/technologies/iot/articles/how-cloud-fog-and-mist-

computing-can-work-together. 2018.

35

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://arxiv.org/abs/1407.3561
https://doi.org/10.1109/ICDE.2003.1260781
https://doi.org/10.1109/DSN.2007.40
https://doi.org/10.1109/NCA51143.2020.9306716
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1109/65.819174
https://doi.org/10.1109/MC.2004.1297243
https://developer.ibm.com/technologies/iot/articles/how-cloud-fog-and-mist-computing-can-work-together
https://developer.ibm.com/technologies/iot/articles/how-cloud-fog-and-mist-computing-can-work-together
https://developer.ibm.com/technologies/iot/articles/how-cloud-fog-and-mist-computing-can-work-together

BIBLIOGRAPHY

[11] M. Jelasity and O. Babaoglu. «T-Man: Gossip-Based Overlay Topology Manage-

ment.» In: Engineering Self-Organising Systems. Ed. by S. A. Brueckner et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–15. isbn: 978-3-540-33352-4.

[12] M. F. Kaashoek, A. S. Tanenbaum, and S. F. Hummel. «An Efficient Reliable Broad-

cast Protocol.» In: SIGOPS Oper. Syst. Rev. 23.4 (Oct. 1989), 5–19. issn: 0163-5980.

doi: 10.1145/70730.70732. url: https://doi.org/10.1145/70730.70732.

[13] A. Kermarrec, L. Massoulie, and A. J. Ganesh. «Probabilistic reliable dissemination

in large-scale systems.» In: IEEE Transactions on Parallel and Distributed Systems
14.3 (2003), pp. 248–258. doi: 10.1109/TPDS.2003.1189583.

[14] P. Labs. Filecoin: A Decentralized Storage Network. https : / / filecoin . io /

filecoin.pdf. 2017.

[15] P. Labs. libp2p. https://libp2p.io.

[16] P. Labs. Protocol Labs Website. https://protocol.ai/about. 2021.

[17] J. Leitao, J. Pereira, and L. Rodrigues. «Epidemic Broadcast Trees.» In: 2007 26th
IEEE International Symposium on Reliable Distributed Systems (SRDS 2007). 2007,

pp. 301–310. doi: 10.1109/SRDS.2007.27.

[18] J. Leitao, J. Pereira, and L. Rodrigues. «HyParView: A Membership Protocol for

Reliable Gossip-Based Broadcast.» In: 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’07). 2007, pp. 419–429. doi:

10.1109/DSN.2007.56.

[19] J. Leitão et al. «X-BOT: A Protocol for Resilient Optimization of Unstructured Over-

lay Networks.» In: IEEE Transactions on Parallel andDistributed Systems 99.PrePrints

(2012). issn: 1045-9219. doi: http://doi.ieeecomputersociety.org/10.1109

/TPDS.2012.29.

[20] J. Leitão. PhD thesis, Topology Management for Unstructured Overlay Networks. Tech.

rep. Technical University of Lisbon, 2009.

[21] J. Leitão, J. Pereira, and L. Rodrigues. «Gossip-Based Broadcast.» In: Oct. 2010,

pp. 831–860. doi: 10.1007/978-0-387-09751-0_29.

[22] J. Leitão et al. Towards Enabling Novel Edge-Enabled Applications. 2019. arXiv:

1805.06989 [cs.DC].

[23] J. Liang and K. Nahrstedt. RandPeer: Membership management for QoS sensitive peer
to peer applications. Tech. rep. 2005.

[24] Q. Lv et al. «Search and Replication in Unstructured Peer-to-Peer Networks.»

In: Proceedings of the 16th International Conference on Supercomputing. ICS ’02.

New York, NY, USA: Association for Computing Machinery, 2002, 84–95. isbn:

1581134835. doi: 10.1145/514191.514206. url: https://doi.org/10.1145/51

4191.514206.

36

https://doi.org/10.1145/70730.70732
https://doi.org/10.1145/70730.70732
https://doi.org/10.1109/TPDS.2003.1189583
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://libp2p.io
https://protocol.ai/about
https://doi.org/10.1109/SRDS.2007.27
https://doi.org/10.1109/DSN.2007.56
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.29
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2012.29
https://doi.org/10.1007/978-0-387-09751-0_29
https://arxiv.org/abs/1805.06989
https://doi.org/10.1145/514191.514206
https://doi.org/10.1145/514191.514206
https://doi.org/10.1145/514191.514206

BIBLIOGRAPHY

[25] R. Mahmud, R. Kotagiri, and R. Buyya. «Fog Computing: A Taxonomy, Survey and

Future Directions.» In: Internet of Everything: Algorithms, Methodologies, Technolo-
gies and Perspectives. Ed. by B. Di Martino et al. Singapore: Springer Singapore,

2018, pp. 103–130. isbn: 978-981-10-5861-5. doi: 10.1007/978-981-10-5861-5

_5. url: https://doi.org/10.1007/978-981-10-5861-5_5.

[26] P. Maymounkov and D. Mazières. «Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric.» In: Peer-to-Peer Systems. Ed. by P. Druschel, F. Kaashoek,

and A. Rowstron. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 53–65.

isbn: 978-3-540-45748-0.

[27] R. Melamed and I. Keidar. «Araneola: a scalable reliable multicast system for

dynamic environments.» In: Third IEEE International Symposium on Network Com-
puting and Applications, 2004. (NCA 2004). Proceedings. 2004, pp. 5–14. doi: 10.1

109/NCA.2004.1347755.

[28] A. Montresor and M. Jelasity. «PeerSim: A scalable P2P simulator.» In: 2009 IEEE
Ninth International Conference on Peer-to-Peer Computing. 2009, pp. 99–100. doi:

10.1109/P2P.2009.5284506.

[29] J. Pereira et al. «Low latency probabilistic broadcast in wide area networks.» In:

Proceedings of the 23rd IEEE International Symposium on Reliable Distributed Systems,
2004. 2004, pp. 299–308. doi: 10.1109/RELDIS.2004.1353030.

[30] J. Pereira, R. Oliveira, and L. Rodrigues. «Efficient Epidemic Multicast in Hetero-

geneous Networks.» In: On the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops. Ed. by R. Meersman, Z. Tari, and P. Herrero. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 1520–1529. isbn: 978-3-540-48276-5.

[31] K. Petersen et al. «Bayou: Replicated Database Services for World-Wide Appli-

cations.» In: Proceedings of the 7th Workshop on ACM SIGOPS European Workshop:
Systems Support for Worldwide Applications. EW 7. New York, NY, USA: Association

for Computing Machinery, 1996, 275–280. isbn: 9781450373395. doi: 10.1145/5

04450.504497. url: https://doi.org/10.1145/504450.504497.

[32] R. Rodrigues and P. Druschel. «Peer-to-peer systems.» In: Communications of the
ACM 53.10 (2010), pp. 72–82.

[33] W. Shi et al. «Edge Computing: Vision and Challenges.» In: IEEE Internet of Things
Journal 3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.2579198.

[34] I. Stoica et al. «Chord: A Scalable Peer-to-Peer Lookup Service for Internet Appli-

cations.» In: SIGCOMM Comput. Commun. Rev. 31.4 (Aug. 2001), 149–160. issn:

0146-4833. doi: 10.1145/964723.383071. url: https://doi.org/10.1145/964

723.383071.

37

https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1007/978-981-10-5861-5_5
https://doi.org/10.1109/NCA.2004.1347755
https://doi.org/10.1109/NCA.2004.1347755
https://doi.org/10.1109/P2P.2009.5284506
https://doi.org/10.1109/RELDIS.2004.1353030
https://doi.org/10.1145/504450.504497
https://doi.org/10.1145/504450.504497
https://doi.org/10.1145/504450.504497
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/964723.383071

BIBLIOGRAPHY

[35] C. Tang, R. N. Chang, and C. Ward. «GoCast: gossip-enhanced overlay multicast

for fast and dependable group communication.» In: 2005 International Conference
on Dependable Systems and Networks (DSN’05). 2005, pp. 140–149. doi: 10.1109

/DSN.2005.52.

[36] S. Voulgaris, D. Gavidia, and M. van Steen. «CYCLON: Inexpensive Membership

Management for Unstructured P2P Overlays.» In: Journal of Network and Systems
Management 13.2 (2005), pp. 197–217. issn: 1573-7705. doi: 10.1007/s10922-0

05-4441-x. url: https://doi.org/10.1007/s10922-005-4441-x.

[37] S. Wilkinson et al. Storj A Peer-to-Peer Cloud Storage Network. 2014.

[38] B Yang and H. Garcia-Molina. «Comparing Hybrid Peer-to-Peer Systems.» In: 27th
International Conference on Very Large Data Bases (VLDB 2001). This is a shortened

version; see the extended version for full details. 2001. url: http://ilpubs.

stanford.edu:8090/727/.

38

https://doi.org/10.1109/DSN.2005.52
https://doi.org/10.1109/DSN.2005.52
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
https://doi.org/10.1007/s10922-005-4441-x
http://ilpubs.stanford.edu:8090/727/
http://ilpubs.stanford.edu:8090/727/

	List of Figures
	Introduction
	Objective
	Contributions
	Research Context

	Document Structure

	Related Work
	Peer-to-Peer
	Peer-to-Peer Networks and Edge Computing
	Peer-to-Peer Architecture

	Peer-to-Peer Services
	Broadcast
	Reliable Broadcast Problem
	Probabilistic Broadcast Problem

	Overlays
	Structured Overlays
	Unstructured Overlays
	How to Adjust/Bias the Network Topology

	Addressing Heterogeneity in Unstructured Overlays
	Tackling Heterogeneity at the Service Layer
	Tackling Heterogeneity on the Membership Layer

	Discussion
	Summary

	Future Work
	Proposed Solution
	Inferring a Node's Relative Capacity
	Adjusting the Number of Neighbors of a Node
	Building the Gossip Protocol

	Evaluation
	Overlay Evaluation
	Full Proposal Evaluation

	Schedule

	Bibliography

