
FMKe: a Real-World Benchmark for Key-Value Data Stores
Gonçalo Tomás

NOVA LINCS & DI, FCT,
Universidade NOVA de Lisboa,

Portugal
ga.tomas@campus.fct.unl.pt

Peter Zeller
University of Kaiserslautern,

Germany
p_zeller@cs.uni-kl.de

Valter Balegas
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

v.sousa@campus.fct.unl.pt

Deepthi Akkoorath
University of Kaiserslautern,

Germany
akkoorath@cs.uni-kl.de

Annette Bieniusa
University of Kaiserslautern,

Germany
bieniusa@cs.uni-kl.de

João Leitão
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

jc.leitao@fct.unl.pt

Nuno Preguiça
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

nuno.preguica@fct.unl.pt

ABSTRACT
Standard benchmarks are essential tools to enable developers to
validate and evaluate their systems’ design in terms of both relevant
properties and performance. Benchmarks provide the means to eval-
uate a system with workloads that mimics real use cases. Although
a large number of benchmarks exist for database system, there is a
lack of standard benchmarks for an increasingly relevant class of
storage systems: geo-replicated key-value stores providing weak
consistency guarantees. This has led developers and researchers to
rely on ad-hoc tools, whose results are both hard to reproduce and
compare.

In this paper, we propose the �rst standardized benchmark spe-
cially tailored for weakly consistent key-value stores. The bench-
mark, named FMKe, is modeled after a real application: the Danish
National Joint Medicine Card. The benchmark is scalable, it can be
parameterized to emulate a large number of access patterns, and it
is also highly �exible, enabling its application on systems that o�er
di�erent consistency guarantees and mechanisms.

CCS CONCEPTS
• General and reference → Evaluation;

KEYWORDS
Benchmark, Key-Value Store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’17, Belgrade, Serbia
© 2017 ACM. 978-1-4503-4933-8/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3064889.3064897

ACM Reference format:
Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Akkoorath, Annette
Bieniusa, João Leitão, and Nuno Preguiça. 2017. FMKe: a Real-World Bench-
mark for Key-Value Data Stores. In Proceedings of PaPoC’17, Belgrade, Serbia,
April 23, 2017, 4 pages.
DOI: http://dx.doi.org/10.1145/3064889.3064897

1 INTRODUCTION
Standard benchmarks provide a uniform way for evaluating and
comparing di�erent systems. The most used benchmarks for data-
bases (e.g. TPC-C [5], TPC-W [6], etc.) model realistic applications.
As such, this type of benchmarks is expected to provide a more
realistic performance evaluation than synthetic benchmarks, where
individual operations are generated randomly according to some
distribution de�ned in the workload.

While the TPC-* benchmarks work well for the evaluation of
relational, strongly consistent database systems, they are a bad �t
for evaluating eventually consistent key-value stores. The main
issue is that they do not re�ect the way key-value stores are typically
used. For example, some aggregation queries in TPC-W are very
expensive to implement on top of a key-value data model respecting
the speci�cation, which can render the value of experiments useless.

Given the need of evaluating their systems, many system develop-
ers opt for implementing their own version of popular applications,
like Twitter, FusionTicket [4], or even TPC-C/TPC-W. Yet, there is
no standardized way of comparing these ad-hoc implementations
due to di�erent codebases and the lack of a common speci�cation.
The Yahoo! Cloud System Benchmark (YCSB) [7] addresses this
problem by providing a set of standard benchmarks that can be
used to evaluate key-value stores. However, the operations of the
benchmark consists of simple read/write operations, while real-life
applications often use more complex access patterns.

In this paper, we present FMKe, a new application benchmark
tailored to the evaluation of key-value stores providing weak consis-
tency. It is based on a subsystem of the Danish National Healthcare

PaPoC’17, April 23, 2017, Belgrade, Serbia G. Tomás, P. Zeller, V. Balegas, D. Akkoorath, A. Bieniusa, J. Leitão, N. Preguiça

treatment facility

medical sta� patient

pharmacy

hasTreatment hasEvent

hasPrescription

Figure 1: Simpli�ed ER diagram that models FMKe

System (FMK, Fælles Medicinkort), and the workload is de�ned
based on real-life statistics obtained from this production system.
FMKe models the handling of prescriptions assigned to patients.
This information is accessed concurrently by multiple entities, in-
cluding medical facilities, such as hospitals, and pharmacies.

The benchmark can be used to evaluate any storage system
providing weak consistency guarantees, but also includes variants
for evaluating advanced database features, such as highly available
transactions.

In the remainder of this paper we present the data model of the
FMKe benchmark, describe the operations of the workload, and
discuss its implementation and evaluation on top of Antidote [1], a
key-value store that supports highly available transactions under
geo-replication.

2 FMKE BENCHMARK
In this section we introduce the FMKe benchmark. This benchmark
was designed based on a real system that operates at National
level in Denmark, which is used to manage medical information,
prescriptions, and treatment information for the population of the
country. When designing the benchmark we focused on a subset of
the information that the original FMK application needs to store,
which mainly concerns prescription management.

When designing FMKe, we did not use the data model employed
by the original FMK application. Instead, we have designed the
data model (presented below) based on the operations provided by
FMK to manage prescriptions. Furthermore, we have taken into
consideration real operation distributions found in anonymous and
partial logs of the FMK system.

2.1 Data Model
FMKe[3] is a system that manages medical information about pa-
tients. In this domain there is a need to keep records for pharmacies,
treatment facilities, patients, prescriptions, patient treatments, and
medical events (such as taking medicine or medical prognosis up-
dates). The benchmark includes a set of application-level operations,
each one of them leading to the execution of a sequence of read and
update operations on these entities. The set of hospitals, pharmacies,

patients and medical sta� act as static entities in the benchmark,
so records of these entities can be populated in data stores prior
to the benchmark execution (and these can be scaled in number to
�t the needs of the system under evaluation). Figure 1 presents a
simpli�ed view of the main entities.

2.2 Workload Operations
Table 1 shows the operations performed by the benchmark together
with their relative frequency. We have developed two variants of
the benchmark with di�erent data layouts. The non-normalized
variant follows the strategy of storing data in a denormalized form,
which allows to serve most reads without joining data from di�erent
records. The other variant stores data in a normalized form, which
leads to smaller object sizes, but requires to join data from multiple
records when reading. Table 1 includes the respective number of
reads and writes for the operations in the two implementations. We
now describe the individual operations.

Create prescription registers a new prescription record that is
associated with a patient, medical sta� and pharmacy. After cre-
ation the prescription is considered to be open (i.e. it was not yet
handled by a pharmacy in order to deliver medicine to the patient).
Process prescription changes the state of a prescription record to
signal that it has been handled, so it transitions to the closed state.
Get sta� prescriptions returns all prescription records that are
associated with a speci�c medical sta� member.
Get pharmacy prescriptions returns all prescription records as-
sociated with a pharmacy.
Get processed prescriptions returns only prescriptions that have
been handled (closed).
Get prescription medication returns the medication for a spe-
ci�c prescription record.
Update prescription medication changes the medication for a
prescription that has not been processed.

2.3 Benchmark Characterization
FMKe has been modeled as closely as possible the real production
system FMK. Benchmark operations and their frequency have de-
fault values based in usage data from the real-world system. The
benchmark is naturally a�ected by the number of entities in the
data store on which these operations are performed.

Table 2 presents the values for the parameters used in the re-
sults presented in the next section – the numbers of hospitals and
pharmacies is close to the real numbers, while for patients and
doctors the number is between 1

3 and 1
5 of the real value. In those

experiment, we present results in three di�erent settings where we
vary the number of data centers of the deployment.

The benchmarks can be parameterized to use value that match
the needs of the system being evaluates, either by changing the
number of entities used as well as changing the frequency of each
operation.

3 PRELIMINARY EXPERIMENTAL RESULTS
To show the feasibility of the benchmark, we present some prelim-
inary performance results. To this end we have implemented an
initial prototype of the benchmark, composed by three components:

FMKe: a Real-World Benchmark for Key-Value Data Stores PaPoC’17, April 23, 2017, Belgrade, Serbia

Non-normalized Normalized
Operation Frequency # reads # writes # reads # writes
Get pharmacy prescriptions 27% 1 0 N 0
Get prescription medication 27% 1 0 1 0
Get sta� prescriptions 14% 1 0 N 0
Create prescription 8% 5 4 5 4
Get processed pharmacy prescriptions 7% 1 0 N 0
Process prescription 4% 4 4 1 1
Update prescription medication 4% 4 4 1 1

Table 1: Number of read and write operations per FMKe operation. For some operations in the normalized variant the number
of reads depends on the current number of prescriptions associated to pharmacy, sta�, etc. (denoted by N); this number varies
over time.

Entity Number
Patients 1,000,000

Hospitals 50
Pharmacies 300

Doctors 5,000
Table 2: Number of entities for a workload targeted at per-
formance evaluation

Clients The clients issue HTTP/REST requests to the appli-
cation server, encoding the application operations (section
2.2). This module is implemented using Basho Bench [2],
an open source benchmarking framework.

FMKe application server The FMKe application server re-
ceives client requests, and for each application operation
issues a number of operation to modify the state of the
database.

Database The data of the benchmark is stored in the database.
In our current prototype, we only support Antidote [1].

We ran our experiments in the Amazon Web Service (AWS) in-
frastructure. Each data center instance consists of four m3.xlarge
machines running the Antidote database servers, four m3.xlarge
machines running the FMKe application server and four m3.xlarge
running the Basho Bench workload generator. A m3.xlarge ma-
chine has 4 vCPUs, 15GB of memory and 80 GB of SSD disk. We
used the Ireland, Frankfurt and N. Virginia AWS data centers, with
the following mean round-trip-time between machines in those
data centers: Ireland-Frankfurt: 22.4ms ; Ireland-N.Virginia: 84.9ms ;
Frankfurt-N.Virginia: 89.7ms . The mean round-trip-time between
two machines inside a DC was 0.55ms .

Figure 2 shows a throughput-latency plot for the FMKe bench-
mark on the Antidote system [1]. The plots shows measurements
under three di�erent deployments where we vary the number of
data centers in each deployment. We based the measurements on a
version of FMKe with normalized data layout. The results show that
Antidote scales linearly with the number of DCs. The reason for
this is that the majority of operations in the workload are read-only.
As read-only operations involve only a single DC in Antidote, they
do not generate any additional load on the other DCs. Operations
that update the database generate additional load when forwarding

Figure 2: Antidote performance comparison with varying
number of data centers.

updates, but the e�cient mechanism for update propagation used
in Antidote keeps this additional load low, allowing the throughput
to almost double when we add the second DC.

Figure 3 shows the detailed results for a single experiment, where
it is possible to observe the evolution of throughput and latency
during the complete experiment. These graph are generated by
Basho Bench, and are very useful to understand the behavior of the
system as the database size increases.

4 CONCLUSION AND FUTUREWORK
In this paper we introduced a new benchmark for data stores pro-
viding weak consistency, which is modeled after a wide-area health-
care production system for managing medical prescriptions. We
brie�y presented the data model and operations for this benchmark.
We have described our initial prototype and reported preliminary
performance results obtained with Antidote database.

As next step we plan to provide a precise speci�cation of the
FMKe operations and their functional requirements. From this speci-
�cation we will derive a reference implementation of the benchmark
with bindings for multiple languages. Further, we will de�ne a set
of tests that developers can run to assess the consistency and avail-
ability properties of their system. For instance, these tests would

PaPoC’17, April 23, 2017, Belgrade, Serbia G. Tomás, P. Zeller, V. Balegas, D. Akkoorath, A. Bieniusa, J. Leitão, N. Preguiça

Figure 3: Results for a single experiment (1 DC, 32 clients).

allow checking whether operations executed atomically, or if the
system provides causality. We also aim for mechanisms to measure
data staleness, which is a relevant trade-o� for storage systems
providing weak consistency guarantees and high availability.

Acknowledgements. This work was partially supported by FCT/MCTES: NOVA
LINCS project (UID/CEC/04516/2013) and the European Union, through project LightKone
(grant agreement number 732505).

REFERENCES
[1] AntidoteDB. http://antidotedb.eu. Accessed: 2017-02-15.
[2] Basho Bench. https://docs.basho.com/riak/kv/2.2.0/using/performance/

benchmarking/. Accessed: 2017-02-15.
[3] FMKe code repository. https://github.com/goncalotomas/fmke. Accessed: 2017-

02-15.
[4] Fusion Ticket Solutions Limited. https://github.com/fusionticket. Accessed: 2017-

02-16.
[5] The Transaction Processing Performance Council, Benchmark C. http://www.tpc.

org/tpcc/default.asp. Accessed: 2017-02-15.
[6] The Transaction Processing Performance Council, Benchmark W. http://www.

tpc.org/tpcw/. Accessed: 2017-02-15.
[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking

cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM.

http://antidotedb.eu
https://docs.basho.com/riak/kv/2.2.0/using/performance/benchmarking/
https://docs.basho.com/riak/kv/2.2.0/using/performance/benchmarking/
https://github.com/goncalotomas/fmke
https://github.com/fusionticket
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcw/
http://www.tpc.org/tpcw/

	Abstract
	1 Introduction
	2 FMKe Benchmark
	2.1 Data Model
	2.2 Workload Operations
	2.3 Benchmark Characterization

	3 Preliminary Experimental Results
	4 Conclusion and Future Work
	References

