UNIVERSIDADE TECNICA DE LISBOA
INSTITUTO SUPERIOR TECNICO

—
o

INSTITUTO
SUPERIOR
TECNICO

Topology Management for Unstructured
Overlay Networks

Joao Carlos Antunes Leitao

Supervisor: Doctor Luis Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction
Jury:
Chairperson: Chairman of the IST Scientific Board
Members of the Committee:
Doctor Luis Eduardo Teixeira Rodrigues
Doctor Anne-Marie Kermarrec

Doctor Teresa Maria Sa Ferreira Vazdo Vasques
Doctor Henrique Joao Lopes Domingos

2012

I UNIVERSIDADE TECNICA DE LISBOA
INSTITUTO SUPERIOR TECNICO

INSTITUTO
SUPERIOR
TECNICO

Topology Management for Unstructured
Overlay Networks

Joao Carlos Antunes Leitao

Supervisor: Doctor Luis Eduardo Teixeira Rodrigues

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction
Jury:
Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor Luis Eduardo Teixeira Rodrigues, Professor Catedrdtico do Instituto
Superior Técnico, da Universiade Técnica de Lisboa
Doctor Anne-Marie Kermarrec, Directrice de recherce, do Institut National de
Recherche en Informatique et en Automatique, France
Doctor Teresa Maria Sa Ferreira Vazao Vasques, Professora Associada do
Instituto Superior Técnico, da Universidade Técnica de Lishoa
Doctor Henrique Joao Lopes Domingos, Professor Auxiliar da Faculdade de
Ciéncias e Tecnologia, da Universidade Nova de Lisboa

Funding Institutions:
FCT: Fundagdo para a Ciéncia e Tecnologia
INESC-ID: Instituto de Engenharia de Sistemas e Computadores Investigacdo e
Desenvolvimento em Lisboa

2012

Acknowledgements

The work described in this pages would never be possible to be conducted without the support
of many people, to whom I am in debt. First of all, I have to thank my advisor, Professor Luis
Rodrigues, for providing me all the conditions and the environment to explore new ideas,
and to look for excellence in my research. His motivation, his good nature, and his principles
remain to this day an inspiration, and the opportunities that he offered me to real understand

what is to be a researcher were essential to make me the person I am today.

Evidently I have to thank all my co-authors, Robbert van Renesse, José Orlando Pereira,
Benoit Garbinato, Mouna Allani, Rui Oliveira, Nuno A. Carvalho, Liliana Rosa, Jodo Alveir-
inho, Mdrio Ferreira, Jodo Marques, and Jodo Paiva, for the opportunity to collaborate and
learn from them. Working with them has provided me the opportunity to broaden the spec-

trum of my research and assisted me in growing as a scientist.

The Distributed Systems Group (GSD) of INESC-ID was, and still is, a great environment to
work. Great environments are a result of the people that make it. Therefore, I wish to thank the
present and past elements of the GSD group with whom I have shared ideas and experiences
for more than four years. With no particular order (and hopping not to forget anyone) my
sincere thanks to (in no particular order): André Pessoa, Carlos Ribeiro, Carlos Torrdo, Cristina
Fonseca, Diogo Ménica, Diogo Paulo, José Mocito, Jodo Barreto, Jodo Ferreira, Jodo Garcia,
Joao Matos, Jodo Nuno Silva, Luis Veiga, Maria Couceiro, Mauro Silva, Miguel Branco, Miguel
Correia, Nuno Carvalho, Nuno Machado, Oksana Denysyuk, Paolo Romano, Paulo Ferreira,

Pedro Pedrosa, Rodrigo Rodrigues, Rui Joaquim, Sérgio Garrau, and Xavier Vilaga.

The INESC-ID laboratory, where I have conducted the work presented in the thesis, has
a great work environment. It would never be possible to list everyone in INESC-ID to whom
I feel grateful. However, a special word of appreciation to David Matos, Luisa Coheur, and
Rito Silva, for their good spirits, help, discussions, and friendship. Also, a big thanks for the

administrative people of INESC-ID which were always helpful and many times have brighten

my days, in particular and with no particular order: Vanda Fidalgo, Teresa Mimoso, Manuela

Sado, Paula Monteiro, Elisabete Rodrigues, and Aurélia Constantino.

A special word of appreciation to all my friends (listing them all would be impossible),
that supported me, helped me, and really were patient enough to stay by my side when I
complained about the hardships of life. A special word of appreciation to Alexandre Chicharo

that also revised the text presented here.

Also, a big thanks to my family, in particular to my mother Natalina Leitdo, and my brother
Paulo Leitdo that always without any doubt supported me and my decisions. A special word
for my late grandfather Manuel Claudino, which every other week would ask me “Have you
finished school yet?”. I never really explained to him that I was not attending school as he
thought in his mind, but I know that if I could say to him now “I'm done!” he would have
given me his best smile. His intelligence and his capacity to continually work and make efforts

will never stop being an inspiration.

Evidently, the work here was also affected by so many other people in my life, even if in
different measures. Because of that I have to thank my ex-colleagues in CIISEG, the LaSIGE
laboratory at FCUL (in particular my old room companions, in particular Hugo Bastos, and the
elements of the now extinct DIALNP research group) for everything, and my undergraduate
teachers at FCUL. Also, my thanks to the member of the Zen Shin Kan Iaido Clube de Lisboa
(and my Sensei Joaquim Mendes in particular), for the excellent environment they provided for
me to let go some steam during the course of my PhD. In particular, to Pedro Gomes and Maria

Luis for everything inside and outside the dojo.

A final word of appreciation to the Fundacédo para a Ciéncia e Tecnologia (FCT), for their
financial support.

The work presented in the thesis was supported by the Fundacdo para a Ciéncia e Tecnologia (FCT)
through:

o The PhD grant with reference “SFRH/BD/35913/2007”;

o The FCT founded project “Redico” (PTDC/EIA /71752 /2006);

o The FCT founded project “HPCI” (PTDC/EIA-EIA /102212 /2008);

The FCT founded project “ADAAS” (CMU-PT/ELE/0030/2009);

The INESC-ID multi-annual funding through the PIDDAC Program fund grant;

To all those that contributed to the
work described in these pages, and
to all those that will read this in the

future and find it useful.

Abstract

The peer-to-peer (P2P) paradigm has emerged as a viable alternative to overcome limitations
of the client-server model namely, in terms of scalability, fault-tolerance, and even operational
costs. This paradigm has gained significant popularity with its successful application in the
context of file sharing applications. The success of these applications is illustrated by systems
such as Napster, Emule, Gnutella, and recently, BitTorrent. In order to ensure the scalability of
these solutions many P2P services operate on top of unstructured overlay networks, which are
logical networks deployed at the application level. Unstructured overlay networks establish
random neighboring associations among participants of the system. Although the random
nature of these overlays is desirable by many P2P services, the resulting topology may present
sub-optimal characteristics, for instance from the point of view of link latency. This may have

a significative impact of the performance of P2P services executed over these overlays.

This thesis focuses on the design and evaluation of techniques that manage the topology of
unstructured overlay networks, to understand if and how it is possible to manage the topology
of unstructured overlays in such a way that the random nature and low overhead that charac-
terizes these overlays is not lost, while being able to impose some relaxed constraints over the

topology to benefit the operation of specific P2P services.

To answer this question, four different approaches to manage the topology of unstructured
overlays are proposed and evaluated in the thesis. Each approach is evaluated in the context
of a distinct P2P service that serves as a case study for measuring its benefits. In more detail,
this thesis presents: i) CellFarm, a new overlay that combines properties of unstructured and
structured overlays, to achieve a highly resilient topology composed of cliques of nodes, highly
connected among themselves, that supports efficient replication for P2P systems; i) X-BOT,
a protocol to bias the topology of unstructured overlay networks given any criteria X; i)
Thicket, a protocol that efficiently embeds multiple interior-node-disjoint trees over a single
unstructured overlay; and finally, iv) OpenFire, a protocol for balancing rumor mongering

exchanges in networks populated by Firewalls and NAT-boxes.

Resumo

O paradigma entre-pares (P2P, do Inglés peer-to-peer) surge como uma alternativa viavel para
ultrapassar as limitagdes do modelo cliente-servidor nomeadamente, no que diz respeito a
capacidade de escala, tolerancia a falhas, e até mesmo em termos de custos monetarios op-
eracionais. Este paradigma ficou popularizado com o sucesso de aplicagdes de partilha de
ficheiros. O sucesso e relevancia desta classe de aplicagdes é ilustrado por exemplos como os
sistemas Napster, Emule, Gnutella, e mais recentemente o protocolo de distribui¢do entre-pares
BitTorrent. De forma a garantir a capacidade de escala dos sistemas baseados no paradigma
entre-pares, é frequente estes sistemas operarem sobre uma rede sobreposta ndo estruturada:
uma rede légica estabelecida ao nivel da aplicacdo. As redes sobrepostas ndo estruturadas esta-
belecem relagdes de vizinhanga aleatérias entre os participantes do sistema. Apesar da natureza
aleatdria destas redes ser ttil a operacdo de varios servigos entre-pares, a topologia resultante
pode apresentar um conjunto de caracteristicas sub 6ptimas por exemplo, a topologia da rede
sobreposta pode ser definida, maioritariamente, por ligagcdes que apresentam elevada laténcia.
Consequentemente, a topologia das redes sobrepostas pode ter um impacto significativo no

desempenho de servicos entre-pares executados sobre estas.

Esta tese foca-se no desenvolvimento e avaliacdo de técnicas utilizadas para gerir a topolo-
gia de redes sobrepostas ndo estruturadas. Adicionalmente, esta tese pretende avaliar se é
possivel gerir a topologia destas redes de tal forma que a sua natureza aleatdria, e o baixo custo
de manutencdo, caracteristicos das redes sobrepostas ndo estruturadas, ndo sejam comprometi-
dos, apesar de se imporem constrangimentos adicionais sobre a topologia da rede, por forma a

beneficiar a operacgdo de servicos entre-pares.

De forma a responder a esta questdo, a tese propde e avalia um conjunto de quatro mecan-
ismos para gerir a topologia de redes sobrepostas ndo estruturadas. Cada um dos mecanismos
propostos é avaliado no contexto de um servico entre-pares distinto, que serve de caso de es-
tudo de forma a ilustrar os beneficios que sdo possiveis de alcancar através da solucao proposta.

Em maior detalhe a tese apresenta: i) CellFarm, uma nova rede sobreposta ndo estruturada cujo

desenho combina propriedades de redes sobrepostas estruturadas e ndo estruturadas, o que lhe
permite alcancar uma topologia composta por cliques de nés, que possuem um grande e vari-
ado ntimero de ligacdes entre si. A topologia do CellFarm constitui um substracto adequado
para suportar replicagdo eficiente em sistemas entre-pares; ii) X-BOT, um protocolo capaz de
enviesar a topologia de uma rede sobreposta ndo estruturada tendo como critéria uma medida
de desempenho arbitraria X; ¢i¢) Thicket, um protocolo capaz de inscrever miltiplas arvores
de disseminagdo sobre uma tnica rede sobreposta ndo estruturada, de tal forma que a larga
maioria dos nés apenas comporta-se como né interior numa tnica drvore; e finalmente, iv)
OpenFire, um protocolo capaz de balancear as trocas de rumores entre nés num ambiente pop-

ulado por Firewalls e NATs.

Palavras Chave
Keywords

Keywords

Peer-to-Peer Systems
Unstructured Overlay Networks
Overlay Networks Topologies
Topology Management

Gossip Protocols

Palavras Chave

Sistemas Entre-Pares

Redes Sobrepostas Nao Estruturadas
Topologia de Redes Sobrepostas
Gestado de Topologias

Protocols de Rumor

1 Introduction 1
1.1 Problem Statement 3

1.2 ContributionsSummary L 9
121 CellFarm 9

122 X-BOT 9

123 Thicket 10

124 OpenFire 10

1.3 ResultsSummary 11

1.4 Ramifications and Collaborations 11

1.5 ResearchHistory 12

1.6 ThesisStructure 13

2 Fundamental Concepts and State of Art 15
2.1 Peer-to-Peer Services L o 15
211 Resource Location 16

2.1.1.1 Architectures 17

2112 Typeofqueries. 20

2.1.1.3 Query Dissemination Strategies 21

21131 Flooding 21

21132 RandomWalks. 22

22

2.3

24

2.1.2 Gossip-based Dissemination Protocols 23

2121 RelevantParameters. 23
2122 CommunicationModes 25
213 RumorMongering e 27
2.1.3.1 State Reconciliation 27
2.1.3.2 Behavior Under Unbalanced Networks 28
Performance Metrics 30
221 DirectMetrics L e 30
222 IndirectMetrics 32
2221 ResourceLocation 32
2222 Gossip-based Dissemination 33
2223 RumorMongering oL 34
2.2.3 Opverlay Topology and Application-Level Performance Metrics 34
Overlay Networks 35
2.3.1 Structured Overlay Networks 37
2.3.2 Unstructured Overlay Networks 38
Topology Management of Unstructured Overlay Networks 41
241 Management at the Overlay Layer 41
2411 Main Approaches 42
2412 Strengths and Limitations 42
2413 PreviousWork o o oo 43
242 Management at the P2P Service Layer 45
2421 Main Approaches 46
2422 Strengths and Limitations 47
2423 PreviousWork o o oo 48

ii

3 Control the Topology: CellFarm 51

3.1

3.2

3.3

34

Motivationand Goals L o 51
311 Motivation. L 51
312 Goals e 54
The CellFarm Protocol 55
321 Rationale. 56
322 Algorithm 58
3221 JoinProcedure 59
3.22.2 CellFarm Divide Procedure. 61
3223 Collapse Procedure 64
3.22.4 External Neighboring Procedure. 65
3.22.5 Anti-entropy Procedure 66
323 Increasing Fault-Tolerance 67
CaseStudy e 67
3.3.1 SearchStrategies 68
332 BaselineStrategy 69
333 Cell-AwareStrategy 69
Evaluation 71
3.4.1 Experimental Setting L. 71
3.4.1.1 Tested Topologies 72
3412 QueryFlood Strategy 73
3.4.1.3 Number of Experiments 73
342 Overlay Properties 74
3.421 Overlay Characterization in Steady State 74

ii

3.4.2.2 Fault-Tolerance e 77

3423 ChurnScenario. i 79

3.4.3 CellFarm Support for Resource Location 80

35 Related Work L 82
3.6 Discussion 84
Bias the Topology: X-BOT 87
4.1 Motivationand Goals L 87
4.1.1 Motivation 87

412 Goals 88

42 TheX-BOT Protocol o 89
421 Rationale. e 89
422 Algorithm 92
4221 Stepl 94

4222 Step2 ... 94

4223 Step3 ... 95

4224 Step4d ... 96

4225 Variant 96

43 Oracles 97
43.1 Oracle Implementations 97

432 CombiningOracles 99

4.3.3 Onthe Use of InconsistentOracles 100

434 OracleCost 100

44 Configuring X-BOT 101
441 Active View Size: 101

iv

4.4.2 Passive View Size Control Parameter (k): 101

443 Period Between Optimizations (PBO): 102

444 PassiveScanLength(m): 102

445 Number of Unbiased Neighbors (x): 103

45 Evaluation e 103
451 Experimental Setting L 103

452 X-BOT Performance 105
4521 X-BOT Individual Evaluation 106

45211 Overlaycost 106

45212 Effectonthe Averagelinkcost 107

45213 Clustering coefficient and average shortest path 109

4522 Comparative Evaluation 111

45221 OverlayCost 111

45222 Scenario with several Internet Service Providers 114

453 X-BOT Support for Broadcast 116
4531 SteadyState 117

4532 FaultTolerance 118

4.6 X-BOT Properties 119
461 Complexity 120

4.6.2 Avoiding Local Minima Configurations 120

4.6.3 Ensuring Low Clustering Coefficient. 121

464 Ensuring Low Average ShortestPath 122

4.7 Related Work o 122

5 Embed the Topology: Thicket 127

5.1

52

53

54

Motivationand Goals 127
51.1 Motivation 127
512 Goals o 128
Preliminaries e e 129
52.1 Underlying Unstructured Overlay Network 129
522 Plumtree Protocol 131
523 TreeConstruction 132
524 TreeRepair L 132
525 NetworkDynamics 133
The Thicket Protocol e 134
531 Rationale. e 134
532 Algorithm 136
533 Architecture 136
534 TreeConstruction 139
535 TreeRepair 140
53.6 Tree Reconfiguration 142
537 Network Dynamics. 143
53.8 Configuring Thicket 143
CaseStudy e 144
54.1 P2PSteaming Service oo 144
5.4.2 Prototype Implementation. 0L 145

5421 Components 145

5422 PracticalChallenges 146

Vi

55 Evaluation 148
55.1 Experimental Setting L 148
55.1.1 Simulation Setting o 0 L 148

55.1.2 PlanetLab Setting 149

552 Thicket Performance 150
5521 SimulationResults o 0oL 150

552.1.1 Stable Environment 151

552.1.2 Fault-Tolerance 152

5522 PlanetLab Deployment Results 153

5.5.22.1 Stable Environment 153

55.22.2 Faulty Environment 154

5.5.3 Thicket Support for Streaming L L Lo 155
5531 SimulationResults o oL, 155

55.3.1.1 Stable Environment:. 155

55.3.1.2 Fault-Tolerance: 157

5.53.2 PlanetLab Deployment Results 158

55.3.21 Stable Environment 158

55322 FaultyScenario 159

56 Related Work 160
6 Enrich the Topology: OpenFire 165
6.1 Motivationand Goals 165
6.1.1 Motivation 165

6.1.2 Goals 167

6.2 The Open Fire Protocol 167

vii

6.2.1 Rationale 167

6.2.2 Underlying Unstructured Overlay Network 169
6.2.3 Protocol 170
63 CaseStudy e 173
6.4 Evaluation 173
6.4.1 Experimental Setting 173
642 ExperimentalResults, 174
6.5 Related Work e 177
Conclusions and Future Work 181
71 Conclusions 181
72 Future Work 186

viii

1.1

1.2

3.1

3.2

3.3

34

3.5

4.1

4.2

4.3

List of Figures

A generic architecture for peer-to-peer applications.

Approaches for managing and leveraging the topology of unstructured overlay

networks and mapping to the thesis structure.

The CellFarm overlay. Smaller (red) dots represent physical nodes, while larger

(yellow) nodes represent virtualnodes. L.

Cell size distribution of CellFarm in a steady state scenario obtained through

simulation and a prototype deployment over PlanetLab.

Overlay comparison of in-degree distribution and cost for maintaining the topol-
ogy between CellFarm and an unstructured overlay managed by an improved

version of the Scamp protocol. L oL oL Lo

Comparison of Overlay Connectivity and Recovery Time after massive node fail-
ures between CellFarm and an unstructured overlay based on an improved ver-

sionof Scamp. L

Overlay Connectivity evolution under different churn rates for CellFarm and an

unstructured overlay based on an improved version of Scamp.

Typical X-BOT optimization round involving 4 peers in the unstructured over-

laynetwork.

Evolution of overlay cost for X-BOT when varying the number of unbiased

neighbors for the Cartesian, PlanetLab, and Inet-3.0 scenarios.

Evolution of clustering coefficient in the X-BOT overlay when varying the num-

ber of unbiased neighbors for the Cartesian, PlanetLab, and Inet-3.0 scenarios. . .

ix

7

92

107

110

44

4.5

4.6

4.7

4.8

49

51

52

53

54

55

5.6

5.7

5.8

59

5.10

5.11

Evolution of average shortest path in the X-BOT overlay when varying the num-

ber of unbiased neighbors for the Cartesian, PlanetLab, and Inet-3.0 scenarios. . . 111

Cost of the overlay that results from the operation of X-BOT and the remaining

tested solutions for the three experimental settings. 112

In-degree of the overlay that results from the operation of X-BOT and the re-

maining tested solutions for the three experimental settings. 113

Fraction of sub-optimal links for different protocols and different number of ISPs
in the overlay that results from the operation of X-BOT and the remaining tested

SOlUtiONS e 115

Message dissemination latency using the overlays generated by X-BOT and the

remaining tested solutions for each scenario. 117

Resilience to node failures in terms of connectivity and time required to recover

for X-BOT, GoCast, and Araneola. 118
K-interior node distribution over 5 trees for the NUTS and BOLTS strategies. . . 135
Results concerning the properties of Thicket in a stable environment. 150
Performance results for Thicket properties in a catastrophic scenario. 152
PlanetLab experimental results for the Thicket protocol. 153
K-interior node distribution obtained by Thicket in a catastrophic scenario. . . . 154
Forwarding load obtained by Thicket in a catastrophic scenario. 155

Performance results of the case study when leveraging Thicket in a stable envi-

TONMENt. o o o e e e e e e e e e e e e e e e 156

Reliability of a P2P streaming application leveraging the design of Thicket in a

faulty scenario. 157
Delivery time of data segments for the Thicket prototype in a stable environment. 159
Delivery time of data segments for the Thicket prototype in a catastrophic scenario.160

Reliability of a P2P streaming application leveraging the design of Thicket in a

catastrophicscenario. L L 160

6.1 Max rumor mongering exchanges / peer with OpenFire.

6.2 Maximum latency for the rumor mongering when relying on OpenFire

6.3 Max forwarded messages / peer for the operation of OpenFire.

xi

xii

3.1

3.2

3.3

4.1

4.2

4.3

44

List of Tables

Comparison of graph properties between CellFarm and an unstructured solution

after stabilization.

Query dissemination latency obtained when using CellFarm and an unstruc-

tured overlay based on an optimized version of Scamp.

Query dissemination communication cost of the resource location systems lever-
aging CellFarm and an unstructured overlay based on an optimized version of

Scamp.

Comparison of average link cost, average biased link cost, and average unbiased
link cost for several values of parameter i in X-BOT and in a random overlay

network with similar properties. 0.

Comparison of overlay properties of the overlay generated by X-BOT and the

remaining tested solutions.o L L oL L L Lo

Percentage of nodes in the largest connected cluster for X-BOT and the remain-

ing protocol for different numbersof ISPs. 0oL

Comparison of Broadcast Latency and Reliability using overlays generated by

X-BOT and the remaining tested solutions.

xiii

118

xiv

Introduction

The peer-to-peer (P2P) paradigm has emerged as a viable approach to overcome limitations
of the client-server model namely, in terms of scalability, fault-tolerance, and even operational
costs. In a nutshell, scalability is addressed by having each participant in the system (typically
designated by peer) contributing with its own resources, either in the form of processing power,
bandwidth, disk space, etc. Fault-tolerance is improved by avoiding the existence of a single
point of failure. Finally, the operational cost of the system can be lowered, by avoiding the need
for powerful and expensive servers or centralized infrastructures capable of handling a large

number of clients simultaneously.

This paradigm has gained practical relevance in the context of file sharing applications,
such as Napsterl, Emule (Kulbak & Bickson, 2005), Gnutella?, and more recently BitTor-
rent (Cohen, 2008). Other widely used applications such as Skype (Baset & Schulzrinne, 2004)
and TOR (Dingledine et al., 2004) have also resorted to P2P-based solutions to ensure the scal-
ability of some of their components. More recently, IPTV systems based on the P2P paradigm,
such as the PPLive system (Hei et al., 2007), have been deployed and are currently in produc-

tion with a high commercial success.

Some early P2P systems assume that each participant has access to the full membership
information. An example of this is the application-level broadcast system proposed by Chu et
al. (2002). This assumption is still valid today in small and medium sized systems. For instance,
several one-hop distributed hash tables have been proposed (A. Gupta et al., 2004; Leong & Li,
2004; Risson et al., 2006), which also assume that each participant has access to the complete
system filiation. One-hop DHTs have been employed with success for supporting storage sys-
tems designed for cloud computing environments, such as Amazon’s Dynamo (DeCandia et

al., 2007) and Facebook’s Cassandra (Lakshman & Malik, 2010).

1http ://www.napster.com
nttp://www.gnutella.com

2 CHAPTER 1. INTRODUCTION

While these solutions have proven to scale in stable environments, such as large data-
centers, they present scalability limitations in large-scale open environments (such as the In-
ternet), where the session time of participants may be short, resulting in a high filiation dy-
namism. In such systems, individual peers join, leave, and fail concurrently, sometimes at a
high rate (a phenomena that is usually designated by churn (Stutzbach & Rejaie, 2006)). As a
result, the bookkeeping overhead required to maintain complete views of the system up-to-

date is prohibitively high (J. Li et al., 2005).

To overcome this limitation, most P2P systems rely on some form of membership protocol,
that exposes to each participant a local partial view of the system. These partial views contain
the identifiers® of a (small) fraction of all peers in the system, with whom that participant can
interact directly (e.g. through the exchange of messages). Ideally, the size of such partial views

should grow logarithmically with the number of participants in the system.

Partial views encode neighboring relations among peers and their closure forms an overlay
network (Stoica et al., 2001; Rowstron & Druschel, 2001; Leitdo et al., 2007b; Voulgaris et al.,
2005; Ganesh et al., 2003), a logical network that operates at the application level. Typically,
each participant in the system is only aware of its overlay neighbors and never communicates
directly with other peers. Overlay networks usually belong to one of two classes, according
to the mechanisms employed to build and maintain the overlay topology. These classes are

named structured and unstructured (overlay networks).

Structured overlay networks (Stoica et al., 2001; Rowstron & Druschel, 2001; Zhao et al.,
2004; 1. Gupta et al., 2003) impose constraints to the neighboring relationships that may be
established among peers. These neighboring relations are required to follow a global coor-
dination strategy, often based on random unique identifiers selected independently by each
participant. As a result, the overlay converges to a topology known a priori; services and ap-
plications that use the overlay may leverage on the characteristics of that topology. Typical
examples of structured overlay networks are distributed hash tables (DHT). DHTs offer a rout-
ing functionality over the node identifier space, using keys that belong to that same address
space. This enables the system to route messages through the overlay links to the node with an

identifier that is “closest” to the destination key. Routing can be performed in a number of steps

3 A node identifier usually includes information required to contact the node, such as a pair {ip : port} and, in
some cases, also includes an unique (or probabilistically unique) identifier, such as a bit string.

1.1. PROBLEM STATEMENT 3

that is logarithmic with the number of participants. Due to their efficient routing, structured
overlay networks have been used to support many distributed services, including exact match
resource location systems (Balakrishnan et al., 2003), distributed storage solutions (Druschel &

Rowstron, 2001), and publish subscribe services (Rowstron et al., 2001).

In contrast, unstructured overlay networks (Ganesh et al., 2003; Voulgaris et al., 2005;
Leitdo et al., 2007b) are characterized by a much more relaxed topology where neighboring
associations are random in nature. Due to this random nature, these overlays are usually easier
to build and have a lower maintenance overhead when compared with their structured coun-
terparts. Since they are not required to follow any global coordination method, their main-
tenance may rely on independent or pairwise decisions from participants. By imposing few
constraints, such overlays are better at dealing with the filiation dynamics of large-scale dis-
tributed systems, as well as with churn scenarios. Typically, unstructured overlay networks are
used to support distributed services based on gossip protocols, where nodes exchange informa-
tion through pairwise (random) interactions. One such service, which has received significa-
tive attention from the scientific community in the past, is application level multicast (Birman
et al., 1999; Kermarrec et al., 2003; Eugster et al., 2003; Leitdo et al., 2007a). Unstructured
overlays have also been employed to support other distributed services, such as: resource lo-
cation (Chawathe et al., 2003; Tsoumakos & Roussopoulos, 2006; lamnitchi et al., 2002), anti-
entropy mechanisms (Demers et al., 1987; Renesse et al., 2003), data aggregation (Jelasity &
Montresor, 2004), publish-subscribe (Eugster & Guerraoui, 2002), among others (Renesse et al.,
1998; Koldehofe, 2003; H. Li et al., 2006).

1.1 Problem Statement

The properties and nature of the overlay network topology have a high impact on the per-
formance of P2P services and applications executed on top of them. In order to develop dis-
tributed services based on the P2P paradigm it is therefore of paramount relevance to study
and devise new mechanisms for creating and managing overlay networks, that better match

the application requirements.

Overlay topology has been subject to intensive research for the particular case of dis-

tributed hash tables (Liben-Nowell et al., 2002; Gummadi et al., 2003; Ghodsi et al., 2007; Stoica

4 CHAPTER 1. INTRODUCTION

et al., 2001; Rowstron & Druschel, 2001; Maymounkov & Mazieres, 2002; Rhea et al., 2004;
Dabek et al., 2004). However, fewer results have been obtained for unstructured overlay net-
works, which more relaxed topologic constraints offers the potential for better fault-tolerance

and lower maintenance overhead.

Furthermore, only a few works have explored mechanisms to bridge the gap between un-
structured and structured overlay networks (Maniymaran et al., 2007; Carvalho et al., 2007;
Leitdo et al., 2007a). These works have shown that combining features of structured and un-
structured overlay networks is a promising path to devise new and more efficient overlay
topologies. The topic of improving overlay network topologies, particularly in the context
of gossip-based protocols and unstructured overlay networks, has been identified as a relevant

research field by Birman (Birman, 2007).

Considering this context, the thesis addresses the following question:

What kind of techniques can be devised to provide some degree of structure to over-
lay networks, such that the performance of the P2P applications can be improved

without compromising the robustness and low cost of random overlays?

The work presented in the thesis also addresses additional questions, which are related to

the main focus of the thesis on managing the topology of unstructured overlay networks.

The topology of unstructured and structured overlay networks is managed following two
different approaches. On one hand unstructured overlay topologies are defined at random, by
having nodes establishing neighboring relations among them in an uncoordinated and random
fashion. This results in a highly flexible topology, able to easily reconfigure itself in face of
membership dynamics (e.g., churn). However, the topology itself cannot be easily leveraged
to offer additional support to services, such as application-level routing. On the other hand,
structured overlay networks have topologies which are defined by following hard constraints
that take into consideration the identifiers of peers in the system. This makes the topology of
these overlays highly inflexible, however it allows the topology to offer additional functionality

to services, such as highly efficient application-level routing.

The exiting gap between the topologies of unstructured and structured overlay networks
motivates additional research to combine, in a single overlay network, aspects from the man-

agement schemes usually employed by each overlay type. This would enable the design of

1.1. PROBLEM STATEMENT 5

overlays that present the flexibility, and consequent robustness, of unstructured overlays while
at the same time offering additional support and functionalities to P2P services executed on

top of them. More precisely, the thesis will also address the following question:

e Isit possible to design overlay networks that fill the gap between structured and unstruc-

tured solutions design and functionality?

A common problem found in overlay networks in general, and in particular in unstruc-
tured overlay networks, is that of the topology mismatch (Hsiao et al., 2009), where the logical
topology defined by the overlay is oblivious to the properties of the underlying network. This
usually results in the overlay network owning several sub-optimal links leading to (poten-
tially high) penalties over the performance of P2P services that leverage the topology offered
by the overlay. Previous work has addressed how to overcome the topology mismatch prob-
lem, by either taking into consideration some underlay performance criteria, such as link la-
tency (Massoulie et al., 2003; Tang & Ward, 2005; Melamed & Keidar, 2004). However, this does
not avoid the topology of an unstructured overlay to be inadequate when considering a P2P

service or application specific requirements.

This motivates additional research to devise a solution that is able to adapt the topology of
unstructured overlay networks in a more flexible fashion, allowing the topology of the overlay
to better match either underlay performance criteria or high level application requirements,
while at the same time protecting the relevant properties of the overlay, namely the connectiv-
ity, balanced node degree, and low clustering coefficient. To address this challenge the work

presented in the thesis tries to find an answer for the following question:

e Can a generic scheme be designed to adapt the topology of unstructured overlay net-
works that can take into consideration an arbitrary criteria, while at the same time pro-

tecting the relevant properties of random overlays?

Multimedia streaming over the Internet can highly benefit from schemes that leverage on
spanning trees, as to avoid the consumption of network resources to disseminate (potentially
unbounded) amounts of redundant information. Previous work (Leitdo et al., 2007a) has al-
ready shown how to combine tree-based topologies with unstructured overlays. Unfortunately,

relying on a single spanning tree results in a sub-optimal use of available resources in a P2P

6 CHAPTER 1. INTRODUCTION

system. This motivates additional research to devise efficient mechanisms to combine several
spanning tree structures over a single unstructured overlay network. Such an approach would
enable all peers in the system to share the load of the dissemination process in a more bal-
anced fashion, while also offering the opportunity to use a larger portion of available network
resources in the system. To tackle this challenge the thesis will also address the following ques-

tion:

e Can one devise mechanisms to combine the properties of tree-based and unstructured
overlays ensuring both robustness to node failures and an adequate load distribution

across all peers?

Finally, a question which is relevant to the correctness of unstructured overlay network’s
topology and the correctness of services executed on top of them, is the presence of Firewall
and NAT boxes in the underlay. Such components, limit the communication patterns that can
be established among peers of a P2P system. The large portion of P2P solutions found in the
literature assume a uniform communication pattern. The presence of Firewalls and NAT boxes
result in biased interactions among peers, where peers which are located in the public network
(i.e. which are not behind a Firewall or a NAT) will be contacted much more often than the re-

maining peers. To address these scenarios, the thesis will also focus on the following question:

e Is it possible to devise solutions which mask the presence of Firewalls and NAT boxes

without exposing the topology of the underlay to the upper layers?

To address the questions presented above, we model the architecture of P2P systems as de-
picted in Figure 1.1. This model, based on the work presented by Aberer et al. (2005), captures
the architecture of a P2P system, from the point of view of a single peer, as a composition of

four layers. In the following we present a brief description of each layer.

Network Layer The network layer is responsible for exposing an interface to the transport
layer offered by the operative system. In particular, this layer is responsible for queuing
messages to be sent to other peers in the system, and also to receive and deliver messages
received from other peers to the relevant protocols above. Additionally, and in the partic-

ular case where TCP is used as the transport protocol, this layer should notify the Overlay

1.1. PROBLEM STATEMENT 7

Application

Peer-to-Peer Service

Overlay Network

Network

Figure 1.1: A generic architecture for peer-to-peer applications.

Network layer whenever a TCP connection to a peer closes, offering an unreliable failure

detection service.

Overlay Network The overlay network layer is responsible for managing the logical network
that connects all peers in the system. This is achieved by executing a distributed mem-
bership protocol to provide at each peer a set of neighbors, which correspond to overlay
links. This layer should expose the overlay neighbors to the layer above and should be

able to notify those protocols when changes occur in the (local) overlay topology.

P2P Service This layer is responsible for executing particular P2P services, by taking advan-
tade on the P2P overlay maintained by the layer below it. Services may include gossip-
dissemination services, routing mechanisms, anti-entropy protocols, among others. Ser-

vices provided by this layer are exposed to the Application layer above.

Application The application layer is responsible for implementing the application logic and
eventually exposing an interface to the user. This layer relies on the P2P Service layer to

operate.

Taking into consideration the generic architecture presented above, we envision four dif-
ferent approaches to manage and leverage the topology of unstructured overlay networks as
depicted in Figure 1.2. In the thesis we consider and explore the following approaches operat-

ing at the Overlay Network and P2P Service layers:

8 CHAPTER 1. INTRODUCTION

T N
1
E CINETTRHET 7 o) e Application
D o e e e 1
_________ R Peer-to-Peer Service mmmmmmmn
! . - : .
! Chapter 5 :<"“[Embed] [Enrich]""*: Chapter 6 !
| 1 | 1
e R Overlay Network EEEEEEE -
: <t _control | [sies J :
! Chapter 3 | ontro 1as ' Chapter4 |
| 1 | 1
Network

Figure 1.2: Approaches for managing and leveraging the topology of unstructured overlay
networks and mapping to the thesis structure.

e At the Overlay Layer:

Control This technique is based on introducing soft-constraints to the neighboring rela-
tions that nodes can establish among them during the construction of the overlay
topology. The goal is to maintain a high enough level of randomness as to ensure
that the topology is flexible enough to deal with churn and has a low maintenance
overhead, while ensuring topological properties that can be exploited by P2P ser-

vices executed on top of the resulting overlay.

Bias This technique is based on constructing an overlay network with a random topology
(using any of the available solutions found in the literature) and then (iteratively)
replacing some of the original overlay links in order to improve a performance cri-
teria, for instance the link latency. This allows to achieve an overlay network which
is random in nature, but that is optimized to benefit the performance of P2P services

executed on top of it.
o At the P2P Service Layer:

Embed This technique is based on embedding a secondary topology on top of a pure un-

structured (random) overlay network. Links that are selected to form the secondary

1.2. CONTRIBUTIONS SUMMARY 9

topology are then leveraged by the P2P service to improve its operation, while the
remaining unstructured overlay links can be used to transmit control information,
or to support the operation of the service when the secondary topology becomes

compromised due to global membership dynamics.

Enrich This technique is based on maintaining, at the P2P service layer, additional links
between peers executing the distributed protocol. These links can be leveraged to
improve the operation of the service. These links are not considered as being part of
the underlying overlay network, and can be leveraged by peers, for instance, to ex-
change information with specific participants that might not be their direct overlay

neighbors accordingly to the logic of the underlying membership protocol.

1.2 Contributions Summary

This thesis explores the four alternatives identified above, which are materialized in the fol-

lowing four contributions:

1.2.1 CellFarm

CellFarm is a novel protocol which operates at the overlay network layer that explores a control
approach to manage the topology of an unstructured overlay network. The solution relies on
low-cost overlay construction and maintenance mechanisms which are typically employed for
unstructured overlay networks, such as gossip-based mechanisms and random walks, to build
an overlay where participants organize themselves in controlled size, fully-connected clusters
of nodes, where we name each cluster a Cell . Cells in turn are kept highly connected among
themselves in a random fashion. Such an overlay is proposed as a building block for providing
data replication and load distribution in P2P architectures, whereas each Cell operates as a
virtual node in the system. We evaluate the benefits of CellFarm using a P2P unstructured

resource location service.

1.2.2 X-BOT

X-BOT is a novel protocol which operates at the overlay network layer that explores a bias ap-

proach to manage the topology of an unstructured overlay network. X-BOT is able to bias the

10 CHAPTER 1. INTRODUCTION

topology of an unstructured overlay network given a generic efficiency criteria. The protocol
operates iteratively in a decentralized fashion only requiring partial information about the sys-
tem filiation. Additionally, contrary to previous state of art solutions, X-BOT is able to make
the topology of the overlay evolve to more efficient configurations, while protecting the con-
nectivity and node in-degree during the convergence process. We evaluate the benefits that can

be extracted from the operation of X-BOT considering a P2P gossip-based broadcast service.

1.2.3 Thicket

Thicket is a novel protocol that operates at the P2P service layer to embed highly robust and
efficient interior-node-disjoint trees over a single unstructured overlay network. This solution
relies on the combination of eager-push and lazy-push gossip approaches to embed 7" spanning
trees that cover all nodes over a single unstructured overlay network. The protocol ensures that
a vast majority of peers in the system act as an interior node in a single spanning tree, which
contributes for the load-distribution and also to the fault-tolerance of the system. Additionally,
each peer maximum load (i.e., the maximum number of downstream tree branches that depart
from a node) is limited by a global configuration parameter. We have evaluated the advantages

of Thicket in the context of a gossip-based streaming service.

1.24 Open Fire

OpenfFire is a novel mechanism that operates at the P2P service layer by enriching the topology of
an unstructured overlay network with additional links. The solution is able to balance rumor
mongering exchanges in unbalanced overlay networks where nodes have variable in-degree
due to the existence of Network Address Translation (NAT) boxes and Firewalls. The overlay
topology is enriched through a low-cost single-sized cache, which is used to redirect rumor
mongering requests among peers. This allows, in a very simple fashion, to ensure that in an
unbalanced overlay each peer participates in a similar number of rumor mongering exchanges
without any coordination among peers. We evaluate the benefits of OpenFire in the context of

a gossip-based anti-entropy service.

1.3. RESULTS SUMMARY 11

1.3 Results Summary

Considering the contributions listed above, the main results present in the thesis are the fol-

lowing:

e Implementation of the CellFarm protocol and its evaluation through a combined use of

simulation and a prototype deployment over the PlanetLab testbed.

e Design, implementation, and evaluation through simulation of a set of query dissemina-
tion mechanisms to support a P2P resource location service that leverages on the unique

properties of the CellFarm overlay network.

e Implementation of the X-BOT protocol and its evaluation through the use of simulation
operating in scenarios with different properties and taking into consideration distinct

performance metrics.

e Implementation of Thicket and its evaluation through the combination of simulation and

a prototype deployment over the PlanetLab testbed.

e Implementation of OpenFire and its evaluation using a simulation of this approach for

unbalanced overlay networks in environments with NATs and Firewalls.

1.4 Ramifications and Collaborations

The main results of the thesis listed above have motivated additional research that was pursued
through collaborations. We now list these additional contributions which relation with the

main contributions of the thesis is briefly discussed in chapter 7.

Large-Scale Peer-to-Peer Autonomic Monitoring An autonomic monitoring infrastructure
which relies on a P2P architecture based on unstructured overlay networks both to es-
tablish monitoring relations among components, and to disseminate data to specialized

monitor consoles. This infrastructure is both robust to component failures and efficient.

RASM RASM is an application level broadcast scheme which relies on unstructured overlay
networks to embed a spanning tree used to disseminate message in an expedite and ef-

ficient manner. RASM takes into consideration the expected reliability of both nodes

12 CHAPTER 1. INTRODUCTION

and overlay links when embedding the spanning tree to maximize the reliability of the
dissemination mechanism. A forward error correction mechanism is used to disseminate

redundant messages to mask potential omission due to the use of unreliable overlay links.

Curiata Curiatais a scalable and efficient resource location system that employs self-organizing
techniques to integrate and combine the benefits of structured and unstructured ap-
proaches. The system supports flexible queries, like most unstructured solutions, while

retaining the speed and efficiency provided by structured (DHT-based) solutions.

Rollerchain Rollerchain is a a novel Distributed Hash Table that offers high availability of
stored data in an efficient manner through the combination of unstructured and struc-
tured overlay networks. Rollerchain promotes load distribution and efficient replication
of data in a DHT, independently of the distribution of stored data and node identifiers

over the identifier space.

1.5 Research History

The work presented in the Thesis appears as a follow up to the work I have developed during
my masters studies (Leitdo, 2007) under the supervision of Prof. Luis Rodrigues and in cooper-
ation with Prof. José Orlando Pereira, in the context of the FCT project P-SON (POSC / EIA /
60941 / 2004). The focus of this project was on devising protocols to generate probabilistically-
structured overlay networks for supporting efficient epidemic multicast protocols. The re-
search conducted in this period resulted in two contributions. The first was the Hybrid Partial
View protocol (or simply HyParView) that creates and maintains an unstructured (or random)
overlay network which is highly resilient to node failure, being able to recover from up to 80%
of simultaneous node failures. This protocol employed the control approach discussed earlier
to enforce symmetric overlay links and was originally introduced in Leitdo et al. (2007b). The
second contribution was the Plumtree protocol, which is a protocol that can efficiently embed
a fault-tolerant spanning tree over an unstructured overlay network with properties similar
to the ones guaranteed by HyParView. This protocol relied on the embed approach discussed

earlier and is described in Leitdo et al. (2007a).

Subsequently, I have been working in the main contributions of the PhD Thesis. I had the

opportunity to work with other researchers at the national and international level and conse-

1.6. THESIS STRUCTURE 13

quently, some of the contributions and results described have been pursued in the context of

those collaborations.

The CellFarm protocol was originally designed as an alternative to super-peer networks
under the name Overnesia. The fundamental idea was to have regular peers to form clusters of
nodes that could collaborate among them to act as super-peers. During this process we noticed

that the solution offered a generic support for both load distribution and replication.

X-BOT was designed as a follow up of the HyParView protocol. The idea was to allow the
overlay to include some awareness concerning the underlying network addressing the topol-
ogy mismatch problem. This research was conducted in collaboration with José Pereira which
was a co-author of HyParView, and also with an intern at the Distributed System Group of

INESC-ID named Jodo Marques.

The Thicket protocol resulted from a collaboration with Médrio Ferreira, which was a master
student from the Instituto Superior Técnico that conducted his master studies in the Distributed

System Group under the supervision of Luis Rodrigues.

The scheme for balancing rumor mongering exchanges in unbalanced overlay networks
resulted from a collaboration with Robbert van Renesse from Cornell University with which I
had the opportunity to work, and learn, as the result of a short visit to Cornell University in

the United States of America.

Additionally, the architecture for supporting autonomic P2P monitoring of large scale sys-
tem resulted from a collaborative effort with fellow PhD student Liliana Rosa. The RASM
protocol resulted from a collaboration with Mouna Allani, which was at the time a PhD stu-
dent at the University of Lausanne (Switzerland) under the supervision of Benoit Garbinato.
The Curiata system emerged from the contributions presented in the thesis, and a collabora-
tion with Jodo Alveirinho, a master students at the Distributed System Group of INESC-ID.
The Rollerchain system emerged from collaborative work with Jodo Paiva which is currently

pursuing his PhD in the same research group under the supervision of Luis Rodrigues.

1.6 Thesis Structure

The remaining of the thesis has the following structure:

14 CHAPTER 1. INTRODUCTION

Chapter 2: introduces fundamental concepts which are relevant for the context of the contri-

butions presented in the thesis;

Chapter 3: presents and evaluates CellFarm a novel overlay which explores the control ap-

proach at the overlay network layer;

Chapter 4: presents and evaluates X-BOT a novel protocol that explores the bias approach at

the overlay network layer;

Chapter 5: presents and evaluates Thicket a novel protocol that explores the embedding ap-

proach at the P2P service layer label;

Chapter 6: presents and evaluates OpenFire, a novel solution for balancing gossip exchanges
in unbalanced overlay networks that explores the enriching approach at the P2P service

layer;

Chapter 7: concludes the thesis summarizing the results presented and derived from the thesis

and discussing several pointers for future work.

Fundamental Concepts
and State of Art

The thesis addresses new mechanisms that manage the topology of unstructured overlay net-
works to improve the performance of P2P services. In this chapter we present an overview on

the fundamental concepts related to this topic and discuss the state of art on overlay networks.

This chapter is organized as follows: Section 2.1 discuss relevant examples of P2P services
that typically operate over unstructured overlay networks. We list a number of relevant per-
formance metrics, both direct (i.e., associated with intrinsic properties of the overlay network
topology) and indirect (i.e., associated with performance metrics of services that execute on top
of the overlay) in Section 2.2. These metrics will be used to validate and evaluate the benefits
that can be extracted from the contributions proposed in the thesis. Section 2.3 identifies the dif-
ferences between structured and unstructured overlay networks. Finally, Section 2.4 concludes
this chapter with a discussion on existing techniques to manage the topology of unstructured
overlay networks, both at the overlay layer and the P2P service layer. A summary on existing

approaches found in the literature is also presented.

2.1 Peer-to-Peer Services

As discussed previously, the P2P paradigm has been used to implement several highly scal-
able and decentralized distributed services, such as reliable multicast (Birman et al., 1999; Ker-
marrec et al., 2003; Eugster et al., 2003; Hayden & Birman, 1996; Leitdo et al., 2007b; H. Li
et al., 2006; Pereira et al., 2003, 2004), data aggregation (Jelasity & Montresor, 2004; Kempe et
al., 2003), publish-subscribe (Eugster & Guerraoui, 2002; Wong & Guha, 2008), failure detec-
tors (Renesse et al., 1998; Johansen et al., 2006), slicing (Jelasity & Kermarrec, 2006), resource-
location (Chawathe et al., 2003; Garbacki et al., 2007), distributed file systems (Druschel & Row-
stron, 2001), and data management (DeCandia et al., 2007; Lakshman & Malik, 2010), among

others.

16 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

The thesis focus on three relevant P2P services that are usually implemented on top of
unstructured overlay networks. These particular services have been selected due to their rel-
evance in the context of unstructured overlay networks, and also due to their diverse nature,
which allows to illustrate the benefits of carefully designed unstructured overlay topologies
in the context of different applications. We consider the following services: resource-location,
gossip-based dissemination (both in the context of reliable broadcast and streaming), and ru-
mor mongering. These services will serve as case-studies in the following chapters as a way to
demonstrate the benefits that can be achieved by leveraging the contributions of the thesis, by
evaluating the effect of the proposed mechanisms on particular performance metrics of these

services (we will later discuss such metrics in section 2.2).

2.1.1 Resource Location

One of the most relevant P2P services is resource location. In a nutshell, resource location
allows a participant in a P2P distributed system to obtain the identifiers of a set of peers that
own a given resource. Note that a resource in this context can be a file, an entry in a distributed

data base, free CPU time, etc.

A node that wishes to locate a given resource will first describe that resource using a query
language. The resource location service is then responsible to route the query among peers in
the system in order to gather information about the location of resources that match the issued

query. Finally, the service should provide an answer to the issuer of the query.

Resource location systems became widely popular with the rise and fall of the Napster mu-
sic sharing system! that appeared in 1999. Naspter was closed due to its use of a centralized
server for indexing all files shared by users. After this, several file sharing P2P systems have
appeared and disappeared (mostly due to legal issues) which included some form of P2P re-
source location service. Some of the more popular system include Kazaa, eMule, the Gnutella

network, among others.

In the following we discuss some of the architectures that have been used to support P2P
resource location services. We then discuss the type of queries that can be supported by dif-

ferent architectures and the query dissemination strategies that are typically employed when

1http ://music.napster.com/

2.1. PEER-TO-PEER SERVICES 17

implementing this type of service.

2.1.1.1 Architectures

P2P resource location services can follow one of three main architectures as follows:

Centralized In this type of architecture a central server (or a group of servers) is responsible
for maintaining a global index of all available resources in the system. For instance, in
a file sharing application, the central server should hold a global index where it stores
the set of peers that own each file currently available. When trying to locate a resource,
a peer will issue a query directly to the central server, which will consult its local index
and reply to the client. Notice that in this type of architecture the resource location per
se is not distributed, however the access to resources (e.g., requesting a copy of a file) is

performed in a purely P2P fashion.

The original Napster system followed this architecture, and currently the BitTorrent pro-
tocol (Cohen, 2008) also leverages on centralized servers that index contents and serve

torrent files to clients through Hypertext Transfer Protocol (HTTP).

Distributed over a DHT As an alternative to a centralized index server, some P2P resource lo-
cation services rely on a DHT to maintain a distributed index of all resources available in
the system. In this type of architecture, peers rely in the mapping functionality of DHT to
register their resources, using an unique identifier (e.g., a file name) to associate their own
identifiers to each resource they own. When a peer wishes to locate a given resource, it
uses that resource unique identifier to locate the node in the DHT which maintain the dis-
tributed registry of peers that currently own that resource. Pastry (Rowstron & Druschel,
2001) was originally proposed as an infrastructure to support efficient and distributed

resource location over the Internet.

Distributed over an Unstructured Overlay Another alternative to the use of centralized index
servers is to leverage an unstructured overlay network. In this type of architecture, each
peer will maintain a local index of its own resources and in some cases, indexes for the
resources of some of its neighbors. When a participant wishes to locate a given resource

it disseminates a query among its peers. In order to ensure that the query is able to return

18 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

all possible results, the query must be disseminated to all participants. The first version

of Gnutella was based on this approach.

Using a centralized server to maintain an index of all available resources in the system
greatly simplifies the design of the resource location service. As participants in the system
only have to contact the server in order to get the list of peers that own resources that match
a given query. However, the existence of a centralized server also means that the system has a
single point of failure. Additionally, the system has a high probability of presenting scalability
limitations, as the central server may become a bottleneck in terms of network bandwidth, but
also of processing capacity, as all queries are processed by the server. Note that, individual
participants will have to register, and possibly unregister, their resources in order to make
them available to other participants. This will require additional bandwidth and computational

resources consumption.

Distributed solutions based on DHTs are both efficient and scalable. However, they require
resources in the system to be identified by a unique identifier. This makes these approaches
adequate for processing exact match queries where the node that performs the query knows
exactly what it is looking for, and knows the unique identifier for that resource (we discuss
this type of queries further ahead in more detail). Dealing with keyword based queries in this
type of architecture requires additional mechanisms and consequently, will increase the com-
plexity and operational costs of the system. Previous works, such as the work of Reynolds e
Vahdat (2003), try to overcome this limitation by using inverted indexes, but introduce addi-
tional signaling and complexity due to the costs associated with the management of inverted

indexes, and more elaborate routing of queries.

Solutions based on unstructured overlay networks usually require queries to be dissemi-
nated throughout the entire network in order to ensure that all matching resources are returned.
This happens because there is no obvious way to limit the dissemination of queries to a subset
of nodes and still achieve a good recall.? This results in limited scalability, specially in scenarios
where the rate at which queries are issued by nodes is high. On the other hand, this approach
provides a greater flexibility in the format of queries, as the resources that are targeted by a

query can be described using any language.

*This is a typical performance metric defined as the fraction of resources that match a given query which are
returned by the system.

2.1. PEER-TO-PEER SERVICES 19

Solutions based on unstructured overlay networks remain attractive, not only due to their
increased flexibility and lack of a single point of failure but also because, as discussed previ-
ously, unstructured overlay networks are potentially more robust to churn scenarios. One way
to try and overcome the scalability limitations of these approaches, is to rely in a hierarchical
unstructured topology commonly named a super-peer network (Yang & Garcia-Molina, 2003).

This approach works as follows:

Peers in the system which have more resources, or are deemed more stable (e.g., higher
probability for having a longer session time) according to some heuristic, organize themselves
into an unstructured overlay network. These nodes are called super-peers. Other peers in the
system (named regular peers) connect to one of these super-peers. Super-peers are responsible
for maintaining a consolidated index of the resources owned by them and by regular-peers that
are connected to them. When performing a query, a participant will route a query to its super-
peer (if it is not a super-peer itself). This query is then flooded in the unstructured overlay
network, such that all super-peers process and answer to the query if they (or some of the

regular peers connected to them) own some resource that match it.

This approach can improve the scalability of the system, by reducing the number of nodes
that have to receive and process each query. However, it also presents some limitations.
Namely, it is not trivial to assert which peers are good candidates to become super-peers. More-
over, when a super-peer fails, or leaves the system, the regular peers that were connected to
it become disconnected from the system, and have to select a new super-peer. These super-
peers need to update their consolidated indexes, which leads to additional consumption of
both bandwidth and computational power. Finally, this type of solution does not take advan-
tage of the computational and network resources of regular peers, which do not contribute
actively for the operation of the system. Super-peer-based approaches have been employed in
the second version of Gnutella, Kazza, and in SOSPNet system (Garbacki et al., 2007), among

others.

Note that DHT-based architectures can also rely on a two-tier architecture to mitigate some
of the negative effects of churn due to peers that remain in the system for a very brief period
of time. In this approach, only nodes that are considered to be more stable (i.e., super-peers)
join the DHT, while the remaining nodes act as clients of super-peers. This type of hierarchical

architecture is employed by the Skype system to maintain the directory of connected users.

20 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

However, Skype has become unavailable for somewhat long periods of time due to the failure
of the super-peer DHT as the result of concurrent updates of clients running over Windows
operative system, and also due to the concurrent failure of a large portion of super-peers due
to a bug in a version of the Windows client. Both these incidents demonstrated that DHTs are

susceptible to churn conditions (Arak, 2007; Rabbe, 2010).

2.1.1.2 Type of queries

Queries can employ different languages to describe the type of resources they target. There
is no universally accepted framework to classify queries accordingly to their format, and the
information they can carry to identify resources. In the context of the thesis we consider the

following three types of queries that can be supported by resource location services:

Exact Match Queries This type of queries rely on resource unique identifiers. These queries
allow to locate resources if their unique identifiers are known a priori. For instance, in a

file sharing system, an exact match query can carry the name of the desired file.

Keyword Queries These queries usually carry a set of keywords that are associated with a
set of resources. Typically these keywords can be combined using the logical operators
“and” and “or”. These queries allow to return a list of resources, and peers that own those
resources, which were classified with the keywords present in the query (respecting the
logical relations specified in the query). For instance, in a file sharing system, a keyword
query may carry a set of tags that users associate to the file such as video, tv show, music,

etc.

Arbitrary Queries These queries contain a set of arbitrary properties associated with the re-
sources that are available in the system. These properties may also be combined using
several logical operators, such as “and”, “or”, negations, etc. For instance, in the case
of a file sharing system, an arbitrary query may specify properties concerning keywords,

contents, size and extension of the file, among others.

As discussed previously, DHT-based resource location services are very efficient in dealing
with exact match queries. Keyword queries can also be supported by DHT-based resource loca-

tion by using, for instance, the work of Reynolds e Vahdat (Reynolds & Vahdat, 2003). In sharp

2.1. PEER-TO-PEER SERVICES 21

contrast, arbitrary queries do not benefit from the DHT deterministic topology. Therefore, they

are mainly supported by resource location services based on unstructured overlay networks.

2.1.1.3 Query Dissemination Strategies

The dissemination of queries in P2P resource location services can be performed using several
strategies. In the particular case of centralized solutions, there is no need for a specialized
mechanism to disseminate queries, as participants will simply send their queries to the central

component and get an answer from it.

Architectures based on DHTs, usually rely on the application-level routing infrastructure
provided by the underlying DHT to route queries to nodes that own information about re-
sources that are relevant for the query. In the case of exact match queries this usually involves
contacting a single peer, whose id is closest to the unique identifier of the targeted resource.?
For the case of keyword queries, one might require routing the query (or copies of the query)

to several peers in the system, usually one for each of the keywords present in the query.

On the other hand when a P2P resource location service is executed on top of an unstruc-
tured overlay network, which is the case of particular interest for the work presented in the

thesis, one can rely on several routing strategies to disseminate the query among participants.

There are two main classes of query dissemination strategies that are typically employed
on resource location services based on unstructured overlay networks: Flooding, and Random
Walks (Lv et al., 2002). In the literature there are several variants of these approaches proposed.

In the context of the thesis we consider two variations of each strategy as follows:

2.1.1.3.1 Flooding

Complete Flooding This approach is based on disseminating each query to all participants in
the system. Typically this is performed by relying on a push gossip-based dissemination
scheme. Several systems have employed this approach, for instance the Coral content

distribution network?®.

*In many systems this usually means the peer which identifier is the closest to the output of an hash function
over a human intelligible unique identifier.
4http ://www.coralcdn.org

22 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

Flooding with Limited Horizon This is a variant of flooding where only a fraction of the over-
lay is flooded by the query. To this end, messages are disseminated with a conservative
time to live (TTL) value which is decremented with each retransmission of the query.
This allows to lower the overhead imposed by the query dissemination strategy, while
potentially reducing the number of answers that are returned for each query. The use of
flooding with a limited horizon is discussed by Tsoumakos e Roussopoulos (Tsoumakos

& Roussopoulos, 2006).

2.1.1.3.2 Random Walks

Blind Random Walks In this approach a participant that wishes to disseminate a query initi-
ates k random walks in the network. A random walk is performed by having a message
being routed at random among overlay neighbors for a pre-determined number of hops
(usually controlled by using a TTL parameter associated with the message). Each ran-
dom walk will follow a random path on the overlay, and each peer visited by the random
walk processes the associated query and replies to the issuer if some of its local resources

match the query.

Guided Random Walks Contrary to blind random walks, guided random walks rely on in-
formation exchanged between overlay neighbors to bias the path of a random walk in
the overlay. A common strategy to do this, is to have peers exchange among themselves
information about their local indexes, for instance by using bloom filters (Bloom, 1970). A
node can store, for each of its overlay neighbors, information about the contents directly
available at that neighbor, and recursively, at that neighbor neighbors with a decreasing
level of detail. Random walks are then routed at each step, by selecting the current node
neighbor which, accordingly to the bloom filter, has a higher probability of owning re-
sources that match the query. Variants of this technique have been proposed by Crespo e
Garcia-Molina (2002) and Broder e Mitzenmacher (2004). Quasar (Wong & Guha, 2008) is
another example of a system that relies on bloom filters to guide random walks over an
overlay. Notice that this technique cannot be easily applied to arbitrary queries, as this
would require highly complex data structures to be exchanged among overlay neighbors.

Such process would present a non-negligible communication overhead.

2.1. PEER-TO-PEER SERVICES 23

2.1.2 Gossip-based Dissemination Protocols

Gossip-based dissemination aims at supporting the dissemination of messages produced by
one, or many, participants among (all) other participants in the system through a collabora-
tive process, where each node forwards messages received for the first time to a subset of the

remaining participants (usually, their overlay neighbors).

Gossip-based dissemination protocols are a particular instance of the more generic class of
gossip protocols as defined by Demers et al. (1987). The basic idea behind gossip-based dissem-
ination protocols is to have all participants in the protocol collaborating equally to disseminate
information mimicking the process through which rumors and epidemics spread over a popu-
lation. To this end, when a peer wishes to disseminate a message, it selects ¢ nodes at random
- we name these nodes gossip targets - and forwards the message to them (¢ is a typical configu-
ration parameter called fanout, which is discussed further ahead in the text). Upon receiving a
message for the first time, each peer repeats this process: by selecting ¢ gossip targets at random

and forwarding the message to them.

If a node receives the same message twice - which is possible, as each node selects its
gossip targets in an independent fashion (without being aware of gossip targets selected by
other nodes) - it simply discards the message. To allow this, each node has to keep track of
which messages it has already seen and delivered. The history of message identifiers may
grow indefinitely during the execution of the protocol, unless some purging scheme is applied
to garbage-collect obsolete entries. For strategies to purge message histories the reader should

refer to the work by Koldehofe (2003).

The simple operation model of gossip protocols not only provides high scalability but also
a high level of fault tolerance, as its intrinsic redundancy is able to mask network omissions as

well as node failures.

2.1.2.1 Relevant Parameters

Gossip-based dissemination protocols can be parameterized in order to better control their
operation and some relevant trade-offs. The two most relevant parameters associated with

the configuration of gossip protocols can be described as follows:

24 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

Fanout: This is the number of nodes that are selected as gossip targets by a node at each gossip
step in order to retransmit the message. There is a trade-off associated with this parameter
between desired reliability and the amount of redundancy associated with the operation
of the protocol. High fanout values ensure higher levels of fault tolerance (increasing the
probability of atomic delivery, as defined by Kermarrec et al. (2003)) but also generate

more redundant network traffic.

Maximum rounds: This is the maximum number of times a given gossip message is retrans-
mitted by peers. Each message is transmitted with a round value - initially with a value
of zero - which is increased each time a node retransmits the message. Nodes will only

retransmit a message if its round value is smaller than a maximum rounds parameter.

Considering this parameter, gossip-based dissemination services can operate in two

modes:

o Unlimited mode: In this mode of operation the parameter maximum rounds is unde-
fined and there is no specific limit to the number of retransmissions executed for

each gossip message.

o Limited mode: In this mode of operation the parameter maximum rounds is set to some
integer value (higher than 0), effectively limiting the maximum hops executed by

each message over the overlay.

By limiting the maximum number of gossip rounds one can also limit the maximum num-
ber of receivers. For instance, if the message is forwarded by flooding, in order to reach the
entire system the maximum number of rounds must be set equal or higher to the network

diameter.

There is an inherent trade-off between reliability and amount of redundancy associated
with the use of maximum number of rounds parameter. In unlimited mode (or configuring the
maximum rounds parameter with high values) there is a higher probability of achieving atomic
delivery (i.e., that all participants receive each disseminated message) but on the other hand,
more redundant messages are produced (i.e., messages that when received by a peer will not
generate a delivery to the application layer). Furthermore, if memory is limited, there is the

risk of the gossip propagation never finishing due to re-infection (Koldehofe, 2003).

2.1. PEER-TO-PEER SERVICES 25

2.1.2.2 Communication Modes

When implementing a P2P dissemination service based on a gossip protocol, peers can use
several approaches to forward messages to their neighbors. In the context of the thesis the

following three fundamental approaches are considered:

Eager-push approach: Peers send the full payload to their gossip targets as soon as they re-

ceive a message for the first time. This is an approach initiated by the sender.

Pull approach: Periodically, nodes query random selected peers for information concerning re-
cently received, or available, messages. When they become aware of a message that they
did not received yet, they explicitly request the payload of that message to the neighbor
that has it. This is a strategy that works best as a complement to a best-effort broad-
cast mechanism (e.g., by first employing IP Multicast (Deering & Cheriton, 1990)). This
approach is also employed in the work of Birman et al. (1999).

Lazy-push approach: When a node receives a message for the first time, it forwards only the
message identifier (e.g., a hash of the message contents, or some application level iden-
tifier carried by the message) instead of the full message payload. If peers receive an
identifier of a message for which the payload has not been received yet, they explicitly
request the payload from the sender in a similar fashion to the operation of the pull ap-

proach.

There is a trade-off associated with the use of eager-push, pull, or lazy-push strategies.
Eager-push produces additional redundant traffic but it also achieves lower latency than the
remaining strategies (as the remaining strategies require at least an extra round trip time to
produce a message delivery to the application layer). From a latency perspective, the lazy-

push approach conveys very similar results to pull approach.

Another important practical aspect to retain is that, contrary to pull/lazy push approaches,
eager-push does not require the maintenance of local copies of delivered messages for (poten-
tial) later retransmission upon request by neighbors. Hence, pull/lazy push gossip approaches

are more demanding in terms of memory requirements.

These fundamental approaches can also be combined to develop more complex gossip

mechanisms, that usually try to benefit from the strong aspects of each individual approach.

26 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

As the reader can guess, the number of possible combinations is high, as one can use different
algorithms or mechanisms to select when to employ or switch from one strategy to the other.

In the following, we depict two of these hybrid strategies:

Eager-push and Pull approach: Gossip is executed in two distinct phases. A first phase uses
eager-push gossip to disseminate messages in a best-effort manner to a vast majority of
participants (in this phase, the configuration of the push gossip can be somewhat conser-
vative). A second phase of pull gossip is used to recover from omissions that may occur
in the first phase. The idea is to lower the amount of redundancy of the gossip process,
without decreasing its efficiency. However, the use of pull gossip for recovery leads to an

increase in the overall delivery latency (Carvalho et al., 2007).

Eager-push and Lazy-push: Gossip is executed by applying eager-push to a subset of the gos-
sip targets of each node. The selection of the subset of peers can be made using several
strategies (examples can be found in previous work by Leitdo et al. (2007a) and Carvalho
etal. (2007)). Lazy-push is used in the remaining gossip targets to recover from omissions

and ensure that the reliability of the gossip process is not affected.

There are two relevant sub-classes of gossip-based dissemination services, which differ
among them concerning the correctness criteria as well as the data type usually disseminated

by them. We now discuss the differences between these two sub-classes.

Gossip-based broadcast service This particular sub-class of gossip-based dissemination ser-
vices usually considers a system where any node may disseminate messages concurrently
with any other node. Messages disseminated (mostly) do not have delivery order con-
straints, meaning that messages do not have to be delivered to the application in a pre-
determined order. Although latency should be minimized, message do not have strict
time constraints to be delivered to all peers. An example of such a service is a dissemina-

tion service for RSS feeds to a large number of users.

Gossip-based streaming service This particular sub-class of gossip-based dissemination ser-
vices are usually employed to disseminate multimedia data to a large number of con-
sumers. In this case, peers consume the stream of data as they receive it from their peers.

Due to this, messages usually have order constraints and also tight deadlines for delivery

2.1. PEER-TO-PEER SERVICES 27

to all peers (considering the moment at which the data is generated). Also, in most cases
such as the streaming of a live event video, only a node will be disseminating data (this
node is usually dubbed source). For some particular applications, more than a node may
be able to broadcast content, but typically this does not happen in a concurrent fashion,
for instance in a video conferencing application where only the video of the talking party

is disseminated at each moment.

2.1.3 Rumor Mongering

Rumor mongering (as initially proposed in (Demers et al., 1987), also known as anti-entropy)
is a particular instance of gossip protocols, and was one of the first proposals that considered
the use of gossip as a building block for designing distributed systems. The main difference
is that whereas in gossip-based dissemination protocols nodes collaborate among themselves
to disseminate information that is produced by a source node, anti-entropy protocols are often
focused on maintaining state information that is distributed and shared among a potential large
group of peers (e.g., the global filiation of the system), or in extracting aggregation values from

a individual values maintained by each node (e.g., the average communication load for each
peer).

To this end, nodes periodically - every AT, often named the gossip period - engage in a
exchange of information, where a peer (the initiator), will send a message to another peer (the
receiver) which contains some information concerning its internal state. The receiver will then
reply to the initiator with another message typically with a similar content i.e., information
about its own internal state. Then, both peers update their internal state by using the received
information. Note that contrary to gossip-based dissemination protocols, in rumor mongering
solutions peers engage in gossip exchanges at a fixed rate, independently of the production of

events or state updates seen, or generated by, individual participants in the system.

2.1.3.1 State Reconciliation

Some rumor mongering services may use this initial message exchange only to determine if
there are divergences in the internal state of nodes. If nodes detect that their states are diver-

gent, they may be required to exchange additional messages between them in order to perform

28 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

state reconciliation. The mechanisms for performing state reconciliation may have high band-
width requirements, depending on the complexity of the internal state maintained by nodes.

Previous research efforts have focused on reducing these bandwidth requirements.

In the original Clearinghouse paper (Demers et al., 1987), the authors propose an iterative
reconciliation technique, where nodes compare their internal states using hash functions, and
exchange the most recent updates until their states become reconciled. Byers et al. have im-
proved on this design by combining Bloom filters, Merckle trees, and Patricia trees (Byers et al.,
2002). Minsky et al. have proposed a method based on characteristic polynomials (Minsky et
al., 2003).

This class of services has received much attention from the community due to its simplicity,
but also because solutions based on gossip exchanges are able to self-scale, as all participants
will take, in average, the role of initiator and receiver once in each gossip period. Also, this

simple procedure has been show to result in a fast convergence of the node’s state.

Rumor mongering services were originally designed by assuming that a peer is able to se-
lect a receiver uniformly at random among all participants in the system. A viable alternative
for the particular case of large-scale dynamic environment, where a global view of the system
is unavailable to nodes, is to have this service to operate on top of an unstructured overlay
network. In particular the operation of rumor mongering may benefit from an unstructured
overlay maintained by a cyclic algorithm®, at this allows peers to sample, and exchange in-
formation with, a larger number of distinct peers overtime. Intuitively, this approximates the
behavior of rumor mongering to the one achieved when operating with access to full member-

ship information.

2.1.3.2 Behavior Under Unbalanced Networks

As stated previously, rumor mongering were originally conceived to operate in scenarios where
each peer has local access to the full membership of the system. In this particular case the
behavior of the service is well balanced, given that in each gossip round, a participant will, in

average, participate in a gossip exchange as initiator, and another one as receiver.

>The classes of algorithms for managing unstructured overlay networks are discussed further ahead in Sec-
tion 2.3.2.

2.1. PEER-TO-PEER SERVICES 29

However, in a large-scale system, were one must rely in unstructured overlay networks to
cope with membership dynamics, each peer only owns a partial view of the system. Moreover,
unstructured overlay networks may not ensure that all participants are known by a similar

number of nodes (i.e., the overlay may exhibit an unbalanced in-degree distribution).

Additionally, in large scale systems over the Internet, it is not uncommon for communica-
tion to be asymmetric, notably due to the existence of firewalls and Network Address Transla-
tion (NAT) boxes, which limit the communication patterns that peers can establish. Depending
on the operation of the protocol that maintain the unstructured overlay network, this might
augment the unbalance over the in-degree of peers. However, independently of the effect over
the overlay topology, this translates into a scenarios where some peers cannot act as receivers
for other peers. This leads to an unbalanced behavior for rumor mongering services, where
nodes that are publicly available in the Internet, or which are more “popular” in the underly-
ing unstructured overlay network (i.e., which have an in-degree above the average), participate
in a larger number of rumor mongering exchanges that involve complex state reconciliation op-

erations.

Such unbalancing in undesirable, mostly because existing techniques to lower bandwidth
consumption during state reconciliation, present high overheads in terms of the computations
that are required to serialize and deserialize objects that are exchanged among peers during this
operations. Additionally, cryptographic operations that may be required fot performing the ex-
change (e.g. signing or encryption of message contents) significantly increase the consumption

of computational resources (i.e., CPU time).

For example, in a commercial Java-based deployment of Astrolabe (Renesse et al., 2003),
that employs a rumor mongering aggregation service that uses Bloom filters and Merckle trees
for reconciliation, nodes spend approximately 3% of their CPU time on the operations listed
above. In a Planetlab deployment of Fireflies (Johansen et al., 2006), a secure gossip-based
overlay network that uses the reconciliation technique of Minsky et al. (2003), as well as public
key cryptography, nodes use approximately 10% of their CPU time to perform state reconcilia-

tion.

30 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

2.2 Performance Metrics

In order to evaluate the design of unstructured overlay networks, one has to take into consider-
ation a set of performance metrics. More precisely, one has to consider overlay metrics, which
measure direct properties of overlay topologies. Additionally, one should also consider some
relevant application-level metrics, which are performance indicators of services executed on
top of these overlays. Such indirect performance metrics allow to quantify the impact of the

overlay topology over the operation of a particular P2P service that leverage their design.

2.2.1 Direct Metrics

Connectivity The overlay network should be connected, i.e., there should be at least one path
from each node to all other nodes. If this property is not met, isolated nodes will not
be able to cooperate in the execution of a P2P protocol. For instance, messages that are
disseminated on top of an overlay network that is not connected will never be able to be

delivered to some peers.

Although connectivity is a binary property (meaning that an overlay is either connected or
partitioned), a more useful metric to quantify the connectivity of an overlay is the size of
the largest connected component (usually measured in function of the percentage of nodes
in the overlay that belong to the largest connected component). A connected overlay will

present a largest connected component of 100%.

Degree Distribution In an undirected graph, the degree of a node is simply the number of
arcs that are connected to that node. Given that neighbor sets owned by peers define a
directed graph, it is relevant to make a distinction between the in-degree and the out-degree
of a node. The in-degree of a node n is the number of nodes that have n’s identifier on
(at least one) their neighbor sets; it provides a measure of the reachability of a node in the
overlay. For promoting a good load distribution among peers in a system, the in-degree
should be similar across all participants (i.e., the overlay should exhibit a balanced in-
degree distribution). The out-degree of a node n is the number of nodes in the neighbor
sets maintained by n; it is a measure of the node contribution to maintain the overlay

network (The notion of neighbor sets is discussed further ahead in the text).

Moreover, if the probability of failure is uniformly distributed in the node space, for im-

2.2. PERFORMANCE METRICS 31

proved fault-tolerance, both the in-degree and out-degree should be evenly distributed
across all nodes executing the membership protocol. To avoid scenarios where the de-
parture (or failure) of only a few (more connected) peers leads to the full disruption of
the overlay connectivity, the out-degree should be similar across all participants (i.e., the

overlay should exhibit a balanced out-degree distribution).

Average Shortest Path A path between two nodes in an overlay network is a set of edges that
a message has to cross from one node to the other. The average path length of an overlay
is the average of all shortest paths between all pair of nodes in the overlay. This property
is closely related to the overlay diameter. To promote efficient communication patterns
over the overlay network, the average shortest path should present low values, as this
metric is intimately related with the time (and number of hops required) for information

to be disseminated across all peers.

Clustering Coefficient The clustering coefficient of a node is the number of links that exist in
the overlay connecting that node’s neighbors divided by the maximum number of links
between those neighbors. This metric indicates a density of neighboring relations across
the neighbors of a given node (having a value between 0 and 1). The clustering coefficient
of an overlay is the average of clustering coefficients of all nodes. This metric has a high
impact on the number of redundant messages received by nodes when exchanging infor-
mation across overlay links. A high value of clustering coefficient will result in additional
localized traffic, which may lead to additional latency for (most) P2P services. Clustering
coefficient can also affect the fault-tolerant properties of the overlay network, given that
areas of the overlay that exhibit higher values of clustering coefficient can more easily

become isolated from the remaining peers in the system.

Overlay Cost We assume that a cost may be associated with each link of the overlay. The
overlay cost is the sum of cost for all links that form the overlay. Costs may be associated
to a concrete (underlay) network metric such as link latency. However, the link cost may
also capture higher level utility functions; for instance, in a file sharing P2P system, it
could be related to the semantic similarity of files shared by both link edges. Ideally, the

overlay cost should be minimized to improve the overall performance of P2P systems.

32 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

2.2.2 Indirect Metrics

In this section we discuss some relevant performance indicators for the three P2P services dis-
cussed previously. These indicators will serve as indirect metrics for asserting the benefits that
can be extracted from the overlay topologies that result from the application of the techniques

proposed in the thesis.

2.2.2.1 Resource Location

P2P resource location services performance highly depends on the mechanisms employed to
disseminate, or route, queries to relevant peers in the system, and ultimately on the amount of
relevant resources that are located by the service in response to a particular query. Considering

this, we focus on the following performance indicators:

Dissemination Cost The dissemination cost (of a query) is the number of messages that have
to be exchanged among peers in order to route, or disseminate, a query over the overlay.
Implementation of resource location systems that rely of flooding-based mechanisms typ-
ically present a high dissemination cost, whereas systems that operate through random
walks usually present lower values. There is a trade-off between query dissemination

cost and recall rate.

Processing Cost The processing cost (of a query) is the percentage of nodes in the system that
are required to consult their local resource index for matching resources for a given query.
This performance indicator can be artificially lowered by sacrificing the recall rate, by
having some peers drop some queries avoiding to process them. To ensure scalability of
the system to high rates of query injection, the processing cost should be kept as low as

possible.

Recall Rate The recall rate of a resource location service is the percentage of resources returned
by the service in response to a query, in relation to the total amount of resources in the
system that match the query. Resource location services should aim at exhibiting a query

recall rate as close to 100% as possible.

2.2. PERFORMANCE METRICS 33

2.2.2.2 Gossip-based Dissemination

Gossip-based dissemination services performance are highly entwined with the time required
to disseminate messages across all peers in the system, as well as the ability of the service to
be reliable i.e., being able to deliver messages to all participants respecting any delivery time
constraints if they exist, despite membership dynamics that might occur. In the context of the

thesis we focus on the following performance indicators:

Reliability Reliability is defined as the percentage of (correct) nodes in a system which deliv-
ers each disseminated message. A reliability value of 100% is indicative that the broad-
cast protocol was successful in delivering a given message to all active nodes or, in other
words, that the broadcast process resulted in an atomic broadcast as defined by Kermar-
rec et al. (2003). Note that for the particular case of gossip-based streaming services, mes-
sages are only considered to be delivered with success if the time constraints associated
with the operation of the service are respected (i.e., if peers are able to deliver messages
to the application layer in time for the content be presented to the user without an in-
terruption). Typically, the goal of any gossip-based dissemination service is to obtain a

reliability of 100% despite network omissions or node failures.

Last Delivery Hop The last delivery hop, or simply LDH, measures the number of times that
the last message which is delivered by a gossip-based dissemination service was for-
warded. The lower this value, the lower the latency of the protocol. If all links between
nodes were to exhibit the same latency, the latency of a gossip broadcast transmission
would simply be the last deliver hop multiplied by the per hop latency. Also, low LDH
values contribute to improve the reliability of the service, as messages will be required
to be forwarded fewer times which decreases the window in which failures can occur
that might disrupt the dissemination process. This metric depends on the diameter of the

overlay network used to disseminate messages.

Latency The latency of a P2P dissemination service, is the time that a message takes from the
moment it is initially disseminated by the source to the reception by the last node in the
system. For most applications, broadcast latency should be kept as low as possible. No-
tice that one can artificially lower the broadcast latency of a gossip-based dissemination

system by avoiding to deliver the message to all participants, sacrificing the reliability.

34 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

Therefore, broadcast latency should be only compared between dissemination services

that exhibit similar reliability values.

2.2.2.3 Rumor Mongering

The goal of rumor mongering services is to allow peers to maintain a consistent distributed
state. This should be achieved with a minimal inconsistency window and ensuring that the
load imposed over peers to ensure the consistency is evenly distributed to promote scalability.

We consider the following performance indicators for this service:

Load Overhead In anti-entropy protocols, nodes are required to engage in periodic gossip ex-
changes which allow nodes to update their (local) state. The load overhead is defined
as the maximum number of rumor mongering exchanges performed by a single node in
the system in a given time interval AT, minus the average number of gossip exchanges
performed by all peers in the system in that same time period. To avoid overloading

individual nodes, the load overhead should be kept as low as possible.

Latency This performance criteria is related with the latency of gossip-based dissemination
services. Anti-entropy latency is defined as the average time required for an event, or
change in the internal status of a given peer, to be disseminated, and therefore visible, to
all (relevant) peers in the system. This performance criteria is a dominating factor over

the maximum inconsistency time window allowed by the rumor mongering service.

2.2.3 Overlay Topology and Application-Level Performance Metrics

One can expect that the properties of the topology of unstructured overlay networks that sup-
ports a given P2P service has a direct impact on the performance of that same service. For
instance, excessive clustering coefficient increases the latency of gossip-based dissemination
and rumor mongering services, and can also lead to an increase in the dissemination cost of re-
source location services particularly, for those that rely in flooding mechanisms to disseminate
queries. An overlay in which most links exhibit high latency or reduced bandwidth will affect
negatively most P2P services which rely on the overlay to select peers with whom communi-

cate. An unbalanced in-degree distribution may make dissemination services less reliable and

2.3. OVERLAY NETWORKS 35

increase the load overhead of rumor mongering protocols by focusing gossip exchanges on a

sub-set of peers with higher in-degree values.

This creates a clear necessity for managing and improving the topology of unstructured
overlay networks to ensure that correct operation and improve the performance of P2P services
executed on top of them. In Section 2.4 we introduce some of the existing techniques to achieve

such a goal.

2.3 Overlay Networks

An overlay network is defined as a network which is deployed on top of another network. The
links that compose an overlay network are said to be logical, or virtual, as they are (in most
cases) independent of the underlying network links and topology. This means that two direct
neighbors in the overlay, may be separated by several hops in the underlay, and vice versa.
The work presented in the thesis focus on a particular subset of overlay networks: those that

operate at the application level of the TCP/IP protocol stack.

Overlays encode neighboring relationships among peers that are participating and col-
laborating in a given distributed protocol. These neighboring relations are usually captured
through the use of local neighbor sets maintained by each peer p. Notice that some protocols
might sub-divide the neighbor set into multiple subsets, as a way of creating a logical separa-
tion among neighbors, which are then used for different purposes during the execution of the

distributed protocol.

Overlay networks simplify the design of P2P distributed protocols, by decoupling the man-
agement of system membership from the distributed protocol. Managing the membership of
these systems is a complex task, in particular due to the fact that the system filiation may be
subject to churn (which is defined as a fast paced sequence of concurrent join and leave opera-

tions executed by several nodes, as well as node failures (Stutzbach & Rejaie, 2006)).

Neighbor sets are typically maintained by a distributed membership protocol, which is
responsible for dealing with filiation dynamics. The protocol should ensure that a node j that
joins the system is able to fill its neighbor sets with the identifiers of (correct) peers with whom
it can exchange messages and that, eventually, j’s identifier will be added to neighbor sets

maintained by (some of the) other peers currently active in the system. Symmetrically, when a

36 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

node [leaves the system (or fails), the membership protocol should ensure that eventually, I’s

identifier is removed from all neighbor sets.

When a new node, say n, wishes to join an existing overlay network, n will be required
to contact another peer, say c, that is already part of the overlay network; c is therefore called
the contact node of n. Typically, the membership protocol that is responsible for managing the
overlay network will make a request to ¢, triggering the insertion of n in the neighbor sets
of some nodes in the system and consequently, in the current overlay topology. Often, this
procedure will return to n some peers identifiers which it uses to initialize its neighbor set. The
semantics associated with the set of peer identifiers which are returned to n depends on the

overlay logic and the membership protocol.

Overlay networks can be divided in two main classes by taking into consideration the
mechanisms used to maintain local neighbor sets, which in turn defines the overlay topology.
These classes are named respectively, structured and unstructured overlay networks. In the liter-
ature the definition of structured and unstructured overlay is often inconsistent. In the context

of the thesis we consider the following definitions:

e Structured overlay network: An overlay network which relies on a global coordination
scheme, based on unique identifiers of nodes. For instance, an overlay network that or-
ganizes nodes in a ring, ordered accordingly to their identifiers. Such schemes allow to
deterministically infer the location of a node (i.e., the neighbors of that node) in the over-
lay given the identifiers of nodes currently in the system. Structured overlay networks

have a topology that is known a priori, and enforced by construction.

e Unstructured overlay network: An overlay network that has a random topology, such
that it is impossible to predict where a node will be positioned, even knowing the full fili-
ation of the system, the current overlay topology, and the identifier of the joining node. In
these networks there is a larger degree of freedom when managing the overlay topology

in the presence of changes in the system filiation, namely in churn scenarios.

In the following we briefly discuss some of the characteristics of structured and unstruc-
tured overlay networks and provide a set of examples from the literature to better illustrate the

typical design of solutions for each overlay type.

2.3. OVERLAY NETWORKS 37

2.3.1 Structured Overlay Networks

As discussed above, in the context of the thesis we refer to structured overlay networks as

overlays where the topology is tightly controlled by a global coordination mechanism.

The most common example of a structured overlay network is a Distributed Hash Table
(DHT), that enables the system to map any given key (in the identifier space used by nodes) to a
peer that is active at that moment and which identifier is equal, or the closest, to the destination

key.

DHTs have been used for supporting, in an efficient fashion, many large-scale distributed
services, including resource location, publish-subscribe, monitoring, storage, etc. DHTs have
been widely studied, leading to the proliferation of DHT designs, such as Chord (Stoica et
al., 2001), Pastry (Rowstron & Druschel, 2001), Tapestry (Zhao et al., 2004), Koorde (Kaashoek
& Karger, 2003), Kademlia (Maymounkov & Mazieres, 2002), and CHR (Aratjo et al., 2005),

among others.

The popularity of this type of overlay network derives from its flexibility, provided by an
application-level routing infrastructure, where a node can route a message to another node
that is responsible for any particular key. Additionally, DHTs can offer this functionality while
limiting the amount of membership information that each participant has to maintain. In fact,
Rowstron e Druschel have previously shown that, while each node only has to be aware of
approximately 1% of the peers in the system, routing a message in the overlay can be performed
in a logarithmic number of steps with regard to the total size of the system filiation (Rowstron &
Druschel, 2001). This allows DHTs to be scalable, and therefore being an adequate support for
large-scale services. Additionally, because each node is required to keep only a small amount
of information about the system filiation, join and leave operations only impact a small subset
of peers in the system, making these overlay topologies somewhat adapted to some dynamic

environments.

DHTs have also been extremely studied in what concerns their behavior in face of high
dynamics in the filiation (Rhea et al., 2004) and in face of network partitions (Shafaat et al.,
2007). Previous research has shown that the DHT maintenance presents a higher bandwidth
consumption in face of filiation dynamics when compared with unstructured overlay networks

(Blake & Rodrigues, 2003). Also, results reported by Blake e Rodrigues (2003) show that the av-

38 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

erage bandwidth available to typical users, and trends in the evolution of these values, limit
the availability and scalability of P2P distributed storage systems based on DHTs, a fact exac-
erbated by churn conditions, which are frequent operational conditions for systems deployed
over the Internet (Stutzbach & Rejaie, 2006). The authors extrapolate from their results that the

current DHT designs may be unable to deal with high dynamics in low bandwidth networks.

Also, due to the fact that DHT topologies are strict, the join procedure of new elements
assumes the correctness of the routing infrastructure offered by the DHT. Additionally, when
a node detects that one of its peers has failed, it usually cannot replace the link to that peer by
a link to another peer selected at random. Instead it will have to resort to the routing infras-
tructure to locate a suitable replacement to recover from that failure. This suggests that DHTs
are susceptible to churn conditions, which can result in the disconnection of the DHT leading
to the failure of the application level routing service, which may render it impossible to repair
the overlay topology. As an illustration of this problem, Skype has been down more than once

due to the failure of its support DHT (Arak, 2007; Rabbe, 2010).

2.3.2 Unstructured Overlay Networks

As discussed previously, unstructured overlay networks are characterized by neighboring as-
sociations which are established (mostly) at random among participants in a system. Due to
this fact, the topologies of unstructured overlay networks are much more flexible, and impossi-

ble to predict, even if an external observer has global knowledge of the current system filiation.

Unstructured overlay networks have been widely used to support gossip-based protocols.
As discussed previously, this class of protocols is based on random exchange of information
among participants in the system. Although typically, the topology of unstructured overlays
is random in nature, different P2P services may benefit from operating over topologies with
specific characteristics, for instance some gossip protocols may benefit from the existence of
peers with a high degree, which can act as hubs in the network, while other protocols may
benefit from operating on top of overlay networks where the neighbors of each peer change
over time. This has motivated the proposal of several designs of unstructured overlay net-
works, such as Scamp (Ganesh et al., 2003), Cyclon (Voulgaris et al., 2005), MON (Liang et al.,
2005), and Bounce (Deshpande et al., 2006). Additionally, some gossip-based dissemination

systems also include specially tailored membership protocols to maintain unstructured over-

2.3. OVERLAY NETWORKS 39

lay networks with specific properties, such as the ones proposed by Carvalho et al. (2007) or

Leitao et al. (2007Db).

As in all overlay networks, unstructured overlay networks are defined by the closure of
neighbor sets maintained locally by each peer. Because these neighbor sets only maintain a
fraction of the full system filiation, it is fairly common to name these sets partial views. Also,
distributed membership protocols that maintain these views are often said to provide a peer
sampling service (Jelasity et al., 2004). To ensure scalability, the size of partial views should be
much smaller than the size of the full system filiation (for instance, logarithmic with the number

of peers).

Partial views can be maintained using different strategies, providing nodes with a more
static or dynamic view of the system. In particular, we identify two main approaches to manage

partial views of unstructured overlay networks:

Reactive strategy: In this type of approach, a partial view is only updated in response to some
external event that affects the overlay (i.e. a node joining or leaving the system). In stable
conditions, partial views remains unaltered. Scamp (Ganesh et al., 2003) is an example of

a reactive protocol.6

Cyclic strategy: In this type of approach, a partial view is updated every AT time units, as a
result of some periodic process that usually involves the exchange of information with
one or more neighbors. Therefore, a partial view may be updated even if the global
system membership is stable. Cyclon (Voulgaris et al., 2005) is an example of a cyclic

protocol.

Reactive strategies usually rely on some failure detection mechanism to trigger the update
of partial views when a node fails. If the failure detection mechanism is fast and accurate, reac-
tive mechanisms can provide faster response to failures than cyclic approaches. This approach
is also more efficient, as it avoids the constant communication overhead imposed by the cyclic
strategy. In contrast, a cyclic strategy allows each peer to access a wider range of distinct nodes

with whom they can exchange information, even if the global membership remains unaltered,

®To be precise, Scamp is not purely reactive as it includes a lease mechanism that forces nodes to rejoin periodi-
cally to deal with nodes that become isolated due to the departure of failure of other nodes.

40 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

as the contents of partial views are continually updated. Therefore, implementing gossip on
top of reactive partial views is closer to implementing gossip in a system where peers have

access to the complete filiation of the system.

Unstructured overlay networks are interesting because they can be maintained with lower
overhead than their structured counterparts. Also, their random nature allows localized deci-
sions (i.e., they require less coordination) which offer the possibility to react in a more timely
manner to filiation dynamics, such as concurrent joins, leaves, and failures, making these net-
works potentially more resilient to churn. Additionally, because neighboring associations are
not constrained by node identifiers, or a global coordination strategy, there is a higher degree

of freedom when managing the contents of neighbor sets.

Unfortunately the random nature of unstructured overlay networks also leads to some
undesired features. Namely, it is not trivial to support efficient application routing, as there
are no correlation among the identifiers of nodes that establish neighboring relations among
them. Additionally, the existence of several redundant paths among peers, while improving the
resilience of the overlay to node failures, promotes inefficient communication patterns among
peers. This effect can be augmented by imbalance in the popularity of nodes, i.e., where some
peers identifiers are present in the neighboring sets of a much larger number of nodes than
others (unbalanced distribution of in-degree and out-degree). Inevitably, such peers will be
required to participate in more information exchanges, which in some cases may lead to the
exhaustion of their computational resources or available bandwidth. Finally, as the overlay
is build at random, it usually does not take into consideration the properties of links at the
underlay level (e.g., the properties of the IP network such as latency or number of hops that
separate two peers). This may lead to inefficient communication patterns, a problem that is
usually dubbed topology mismatch (Hsiao et al., 2009). Notice that these shortcomings are also
shared, in some measure, by structured solutions. However, as the topology of unstructured

overlays is more flexible, such disadvantages can potentially be more easily circumvented.

2.4. TOPOLOGY MANAGEMENT OF UNSTRUCTURED OVERLAY NETWORKS 41

2.4 Topology Management of Unstructured Overlay Net-
works

As hinted in the introduction, the thesis addresses mechanisms to manage the topology of
unstructured overlays that operate at the overlay layer (i.e., by introducing changes directly
over the protocols that build and maintain the overlay) and also at the P2P service layer (i.e.,
by introducing changes on the behavior of protocols used for coordinating peers and offer a

distributed service).

This section discusses the fundamental aspects of these two approaches providing a brief

overview of their strength and limitations.

2.4.1 Management at the Overlay Layer

The fundamental idea behind topology management at the overlay layer, is to directly ma-
nipulate the protocol that builds and maintains the unstructured overlay, as to ensure that the
neighboring associations established among peers result in a overlay that owns a set of prop-

erties that benefit P2P services operating on top of them.

This can be achieved, for instance, by ensuring or giving preference to overlay links that
match a specific criteria e.g., links that have a point-to-point latency below a given threshold
or offer a minimum bandwidth. Such an approach can also be employed to enforce some
topological performance indicator e.g., ensuring that the average shortest path among any pair
of peers never grows above a pre-determined value or that no peer in the overlay presents a
clustering coefficient above a given threshold, ensuring therefore that the overlay clustering

coefficient also remains below that threshold.

The goal is to provide such constraints directly at the overlay layer, so that P2P services can
be designed without any knowledge or special concern about ensuring these properties. We
identify two fundamental approaches to exploit this strategy and that we explore in the context

of the work presented in the thesis.

42 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

24.1.1 Main Approaches

Managing the topology at the overlay layer can be achieved by having specific constraints
concerning neighboring relations of each peer. This ensures that no overlay link is ever created
which violates these constraints. Alternatively, one can also build an unstructured overlay
using a random algorithm, and then improve its topology by swapping existing overlay links
by new links among peers in the system following an optimization strategy such as giving

preference to links with lower point-to-point latency values.

Considering this, we now provide a more concise definition for each of these two ap-

proaches:

Control This approach is based on adding constraints to the neighboring relations of peers.
Therefore, no overlay link is established that violates these constraints. Note that con-
trary to DHTSs, the constraints over neighboring relations typically do not depend on the
identifiers of nodes. Contrary to DHTs, the overlay topologies that result from employing
this approach over unstructured overlay networks are impossible to predict a priori, even

if one has global knowledge concerning the system filiation.

Bias This approach is based on building an overlay with a random topology (i.e., without en-
forcing any constraint among peers neighboring relations) and then iteratively improv-
ing the topology of the overlay by swapping existing overlay links by new links in such
a way that a set of performance criteria are improved as a result of this biasing process.
The biasing process is permanently executed as to ensure that the overlay topology can

accommodate new participants while retaining an optimized topology.

2.4.1.2 Strengths and Limitations

Managing the topology of unstructured overlay networks at the overlay layer offers the pos-
sibility for improving the operation of P2P services in a transparent way for the service. This
makes the design and implementation of these service significantly more simple, as the proto-
cols do not have to take any special consideration concerning the overlay topology or system
filiation. Additionally, by directly manipulating the links that form the overlay network, one
can avoid sub-optimal links and therefore the potential for improving the operation of P2P

applications or services is greater.

2.4. TOPOLOGY MANAGEMENT OF UNSTRUCTURED OVERLAY NETWORKS 43

There are however some pitfalls that might disrupt the correctness of the unstructured
overlay topology and consequently endangers the correctness of P2P services executed over
it. In particular, management mechanisms that rely on a control approach might be unable to
ensure the connectivity of the overlay, as well as ensuring a balanced in-degree distribution and
low clustering coefficient, without violating topological constraints. For instance, consider a
simplistic example where a maximum point-to-point latency constraint is in place. If a subset of
nodes in the system are connected through high latency connections (e.g., dial-up connections)
the protocol will be unable to locate other peers in the system with whom such nodes can
establish neighboring relations without creating overlay links with a point-to-point latency
above that of the considered threshold. This results in such nodes being unable to join the

overlay and consequently violating the connectivity property of the overlay.

Another relevant limitation of control approaches is that in a churn scenario, peers might
be unable to locate nodes in the system with whom they can establish neighboring relations
for recovering from the departure of previous neighbors in a timely fashion. This can lead to
the catastrophic failure of the overlay network during a churn period, rendering it impossible
to repair the overlay even if the system enters in steady state (i.e., if the global filiation of the

system becomes stable).

The bias process can easily overcome churn scenarios, as the base overlay is build at ran-
dom, therefore under churn peers are free to establish neighboring associations at random (i.e.,
without being required to respect any constraint) which makes the overlay more robust to these
scenarios. However, if the iterative biasing process is performed in a naive fashion, the overlay
properties, namely the connectivity and the balanced in-degree distribution, can still be vio-
lated. Additionally, in the previously discussed scenario where one bias the overlay topology
to promote low point-to-point latency links, nodes with high latency connections can still be-
come isolated from the remaining of their peers. Previous works (Tang & Ward, 2005; Melamed
& Keidar, 2004) have proposed the maintenance of unbiased overlay links (i.e., purely random

or suboptimal overlay links) to overcome these situations.

2.4.1.3 Previous Work

Several previous works found in the literature have followed strategies for managing the topol-

ogy of unstructured overlay networks that fall in the scope of control and bias approaches at

44 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

the overlay layer.

e Control approaches:

- Araneola by Melamed e Keidar (2004) propose an unstructured overlay network
where each peer selects its overlay neighbors in such a way that a configurable
portion of its neighbors are close considering the underlay topology, improving the

point-to-point communication patterns established by peers over the overlay.

— The HiScamp overlay based on the design of Scamp (Ganesh et al., 2003) proposed
by Ganesh et al. (2002) features a hierarchical unstructured overlay topology that
tries to match the underlying autonomous system (AS) topology. In HiScamp only a
single peer among the population of nodes in an AS owns an overlay link for another
peer in each other existing AS. The goal of HiScamp is to promote efficient gossip-
based dissemination where messages are required to transverse high-cost inter-AS

links fewer times.

- In previous work, we have proposed HyParView (Leitdo et al., 2007b) which is an
unstructured overlay network that features symmetric overlay links. It was shown
that this highly contributes to ensure a balanced in-degree distribution across all
peers in the system, which in turn makes the overlay topology highly resilient to

concurrent node failures.

— ITA (Papadakis et al., 2009) is a protocol that aims at addressing the topology mis-
match problem in unstructured overlay networks. The authors rely on a sampling-
based scheme to construct the overlay in such a way that it becomes latency-aware.
ITA tries to protect relevant properties of unstructured overlays, while also aiming

at distributing the load imposed over routers at the underlay level.

— A recent work by Glendenning et al. (2011) proposes a DHT where each node is
materialized by a fully connected clique of nodes. The filiation of cliques is random

in nature and achieved by leveraging a centralized coordination scheme.
e Bias approaches:

- Narada (Chu et al., 2002) is a system used for supporting P2P broadcast over an un-

structured overlay which is biased to promote the use of low latency links. Narada

2.4. TOPOLOGY MANAGEMENT OF UNSTRUCTURED OVERLAY NETWORKS 45

was designed by assuming that nodes have access to the full system filiation in order

to maintain the overlay topology.

— GoCast is a dissemination system proposed by Tang e Ward (2005) that relies on an
overlay network which is biased to promote both low latency and high latency links
while at the same time ensuring a balanced out-degree and in-degree across all peers

in the system.

- T-Man is an overlay topology management scheme proposed by Jelasity et al. (2009)
which uses a gossip-based iterative optimization scheme which allows nodes to con-
tinually bias their local neighboring set accordingly to an utility function which can

order a set of peers according to their utility as an overlay neighbor.

- Gia (Chawathe et al., 2003) is a resource location system that operates on top of an
unstructured overlay network which is biased as the system evolves to give prefer-
ence to neighboring associations where one of the peers is a high capacity node (i.e.
a node with more bandwidth and processing power) to improve the performance of
one-hop replication of resource indexes. The biased topology is then leveraged to

efficiently route queries primarily to high capacity nodes.

— SOSPNet is another resource location system proposed by Garbacki et al. (2007)
which leverages on a hierarchical unstructured overlay network (i.e. a super-peer
network). In SOSPNet regular peers bias their links to super-peers accordingly to

past query results obtained when issuing queries to those super-peers.

We further discuss these works and compare them with the relevant contributions of the

thesis in the following chapters.

2.4.2 Management at the P2P Service Layer

The fundamental idea associated with unstructured overlay topology management at the P2P
service layer, is to expose the overlay links maintained by the overlay layer to the service, and
allow the service to adapt its behavior accordingly to the feedback concerning the use of these

links during the execution of the distributed protocol.

This can be achieved by using two distinct approaches. The first is to adapt the use of the

overlay links at the service layer. This can be achieved for instance by giving preference to

46 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

forward messages to a sub-set of the overlay links, or by employing different communication
approaches to a sub-set of links. Alternatively, one can leverage the feedback obtained from
the execution of the distributed protocol that materialize the P2P service to explicitly add ad-
ditional overlay links which are managed in a way that is independent of the overlay logic

materialized by the overlay maintenance protocol.

The goal is to allow the overlay protocol to operate independently of P2P services, and to
leverage the P2P service logic to improve its performance by taking explicitly into considera-
tion the underlying overlay topology. In the following we clearly define the two approaches
considered in the context of the thesis to manage the topology of unstructured overlays at the

P2P service layer.

2.4.2.1 Main Approaches

As discussed previously, managing the topology at the P2P service layer can be achieved
through two distinct approaches. The first is to adapt the use of the links by the distributed pro-
tocol by taking into consideration the properties of, or the results obtained by the service from
employing, different overlay links. This strategy can allow to embed highly efficient topolo-
gies on top of the random unstructured overlay topology, which can then be exploited by the
P2P service to improve its performance. Alternatively, one can enrich the overlay topology by
creating additional links at the P2P service layer which are maintained in an independent fash-
ion of the unstructured overlay. As these links are selected by following the P2P service logic,
they can assist in improving its performance independently of the protocol used to manage the

underlying unstructured overlay.

Considering this, we provide the two following definitions for each of these approaches:

Embed This approach is based on applying different communication strategies for different
overlay links accordingly to their properties or based on past feedback obtained through
the previous use of those links. In particular, by using different communication ap-
proaches over the links provided by the overlay layer, one can embed a secondary topol-
ogy over the topology of the unstructured overlay network. This allows the protocol,
which materialized the P2P service, to rely on a more efficient topology to support its

main operation. This can be achieved without requiring the protocol responsible for the

2.4. TOPOLOGY MANAGEMENT OF UNSTRUCTURED OVERLAY NETWORKS 47

management of the unstructured overlay to be aware of the P2P service logic.

Enrich This approach is based on enriching the overlay network topology with additional
links following the P2P service logic. These links are not visible to the underlying proto-
col that manages the unstructured overlay topology. Such additional links can be used to
improve the operation of the P2P service. This requires the P2P service layer to maintain

an additional set of neighbors to materialize the additional overlay links.

2.4.2.2 Strengths and Limitations

Managing the topology of unstructured overlay networks at the P2P service layer offers the
possibility for improving the overlay topology in concordance with the specific requirements
of the distributed protocol, that offers the service to the application layer. Additionally, this
strategy enable one to improve the overlay without imposing any additional dynamic to the
overlay topology, which highly contributes for the stability and protection of the unstructured
overlay properties. Such an approach can easily be employed independently of the underlying
unstructured overlay, as long as the protocol that manages the overlay ensures any property

required for the correctness of the P2P service operation.

However, by employing such a strategy one may be limited in terms of the overall per-
formance gain that can be obtained, as this approach is mostly limited to operate by using the
links provided by the underlying overlay network. Additionally, sub-optimal links (consider-
ing a specific set of performance criteria) are never removed from the overlay network, which

can hinder the performance of P2P services and applications executed over that overlay.

By employing a management mechanism that operates at the P2P service layer, the dis-
tributed protocol that offers the service must incorporate some explicit knowledge about the
system filiation, which might add to the complexity of these protocols. Furthermore, this might
require additional coordination mechanisms among peers to maintain either the embedded
topology or the additional links, which can incur in non-negligible overhead effectively limit-

ing the scalability of the overall system.

48 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

2.4.2.3 Previous Work

Some previous works found in the literature have followed approaches that are similar to the
two discussed above in order to manage the topology of unstructured overlay networks. In
the following we briefly introduce some of these works which will be further discussed (along

with others) in the thesis, in the context of the contributions which are more related to them.

e Embed approaches:

- Narada (Chu et al., 2002) also includes a mechanism to embed an efficient span-
ning tree over the biased unstructured overlay network maintained by the system to
support efficient application level broadcast. The proposed solution however is not
scalable, as it relies on full membership information of the system and on a distance

vector algorithm to select which overlay links become part of the spanning tree.

- Previous work proposed by Liang et al. (2005), named MON, proposes an over-
lay network management mechanism that effectively embeds both spanning trees
and directed acyclic graphs over a large scale unstructured overlay network. This
is achieved by disseminating specialized control messages over the unstructured
overlay and having nodes coordinate among themselves to establish the embedded
topology. However, MON was designed to build short lived embedded topologies

and does not make any consideration concerning fault-tolerance.

- GoCast (Tang & Ward, 2005) also includes a mechanism to embed an efficient span-
ning tree on top of the biased unstructured overlay network created by the protocol.
This spanning tree is used to disseminate messages in an efficient fashion. However,
the protocol relies on a distance routing algorithm to embed the spanning tree which

is a solution that does not scale for large-scale systems deployed over the Internet.

- In previous work we have proposed Plumtree (Leitdo et al., 2007a) which com-
bines eager-push and lazy-push gossip communication modes to effectively embed
a highly efficient and robust spanning tree over an unstructured overlay network.
The tree is formed by the closure of the overlay links where eager-push is employed,
ensuring that disseminating messages can be performed with low latency. However,
in this system the forwarding load is not evenly distributed across all peers, as only

nodes that are interior in the tree are required to transmit message payloads.

2.4. TOPOLOGY MANAGEMENT OF UNSTRUCTURED OVERLAY NETWORKS 49

— The work proposed by Carvalho et al. (2007) describes a system which allow the
emergence of efficient embedded structures over an unstructured overlay network.
This work also leverages the trade-offs between eager-push and lazy-push gossip
communication approaches, and takes into consideration not only properties of the
underlaying overlay network but also the state of the dissemination process. It was
shown that such an approach could allow the emergence of probabilistic embedded
topologies that could highly benefit the performance of a gossip-based dissemina-

tion protocol.
e Enrich approaches:

- The work proposed by Kermarrec et al. (2009) explores how to explicitly add over-
lay links to an unstructured overlay network in order to establish chains of links that
can be used to circumvent NAT boxes on P2P systems deployed over the Internet.
This is performed by taking into consideration which nodes can exchange messages
directly, and by adding these additional links by monitoring the operation of the
peer sampling service responsible for managing the unstructured overlay network.
Unfortunately, the result from the operation of this solution may degenerate on long
forwarding chains among peers, which although allowing peers behind NATs to ex-

change messages, also renders the communication between them highly inefficient.

— FASE (Fonseca & Miranda, 2008) is a system for supporting efficient resource loca-
tion over unstructured overlay network which operates by having pointers to re-
sources stored by nodes deployed over the overlay following a space partition logic.
In order to monitor the number of active pointers deployed in the overlay, the sys-
tem relies on a backup node which establishes additional links at the P2P service
layer to all peers storing the pointers. These links are used to monitor the correct-
ness of these peers, and to deploy replacement pointers to the data item in the event

of churn.

Summary

In this chapter we have described in some detail some relevant P2P services that are usually

supported by unstructured overlay networks. These P2P services form the set of case studies

50 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF ART

which will be employed in the thesis to validate and quantify the benefits that can be extracted
from the main contributions discussed in the following chapters. Performance metrics, both
for overlays and applications, which are used to evaluate the topology of unstructured overlay

networks have also been presented and discussed.

We then introduced overlay network and distinguished among unstructured and struc-
tured designs. Finally, we have provided a brief overview of existing techniques to manage the
topology of unstructured overlay networks, focusing on two classes of solutions: Those that
operate directly at the overlay network layer, and those that operate at the P2P service layer.

Finally, we briefly surveyed previous works that have explored the use of these techniques.

Control the Topology:
CellFarm

This chapter introduces and evaluates CellFarm, a protocol that exploits the control approach

for managing the topology of unstructured overlay networks at the overlay layer.

We start by providing a motivation for this contribution and defining its goals. We then
describe the fundamental building blocks and algorithms of CellFarm. A case study used to il-
lustrate the benefits that can be extracted from CellFarm is then presented. The chapter follows
with a discussion on the relevant aspects of the contribution, and with an additional discussion

on related work found in the literature.

3.1 Motivation and Goals

3.1.1 Motivation

The idea of organizing processes into groups to build dependable systems has been used for a
long time in different ways. In fact, it is a cornerstone of most existing techniques that aim at
achieving distributed fault-tolerance by software (Birman & Renesse, 1994; Powell, 1994). For
instance, one can organize a set of processes such that they collectively implement a replicated
fault-tolerant state machine (Schneider, 1990), or simply run a replicated set of web servers

with the main goal of achieving load-distribution (Cardellini et al., 2002).

As a result, there is a large body of research on techniques to coordinate members of a
process group to achieve dependable services (Mullender, 1993; Birman & Renesse, 1994). The
problem of how processes are selected and organized to build these groups is a much less
studied topic. Quite often, the members of a process group are simply statically defined at
deployment time. In more sophisticated systems there is a configuration manager that has a
global view of the system and instructs processes to dynamically join or leave a given process
group, for instance, to preserve a predefined target replication degree (Liu et al., 2010; Sahota

etal., 2009). Even if the configuration manager may be replicated for fault-tolerance (e.g., using

52 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

techniques such as the ones proposed by Moura e Endler (2003)), it is typically implemented
as a logically centralized component, that maintains the global state required to know which
groups need to be re-configured and which processes are more suitable to have their tasks
re-assigned (Liu et al., 2010; Sahota et al., 2009). These approaches, although presenting the
potential to leverage on global knowledge to achieve an optimal configuration, are not scalable
and cannot be applied effectively in the context of large-scale P2P systems deployed over the

Internet and subjected to churn conditions.

In some recent systems of medium scale, group formation is performed in a decentralized
manner using consistent hashing. For instance, the Infinispan! distributed in-memory cache,
relies on consistent hashing to select which nodes keep replicas of each data item. Unfortu-
nately, this scheme also does not present enough scalability to be applied to large-scale P2P
systems. As it requires that all nodes have a consistent and complete view of the membership

for the entire system such that, consistent hashing techniques can be employed.

Moreover, the idea of using process groups has also been proposed to build dependable
large-scale distributed systems. In fact, it is now possible to find in the literature several exam-
ples of architectures that use process groups in the context of systems with very large number
of nodes (in the order of thousands), where the membership can be highly dynamic, in a simi-
lar fashion to large-scale P2P systems. For completeness, it is worth to take into consideration

some of these examples:

e The work of Sahota et al. (2009) uses process groups to build scalable P2P grid services
that maintain a resilient and efficient information system to assist in the management of

available resources in the grid infrastructure.

e In Kun et al. (2009) the notion of process groups is suggested as a way to improve search
in unstructured systems, more specifically, as a way to optimize one-hop replication

schemes.

e InLiu et al. (2010), a large-scale P2P streaming system is proposed where each logical
node of the streaming tree is in fact composed by a process group of fully connected

nodes, that collaborate to achieve dependability and load-balancing.

1See www. jboss.org/infinispan.

3.1. MOTIVATION AND GOALS 53

e In Glendenning et al. (2011) a dependable DHT is proposed where each node of the DHT
is implemented by a group of processes that run Paxos (Lamport, 1998) to coordinate their

tasks.

Unfortunately, these previous approaches either do not address explicitly how process
groups are assembled and maintained, or use specialized solutions that are tightly coupled
with the particular services being implemented. Given that there is a significant number of
large-scale (and particularly P2P) services that could benefit from the existence of a generic
infrastructure to create and maintain groups of peers in dynamic large-scale systems, it be-
comes relevant to design such infrastructure as an independent service that could be used as a

building block in different contexts.

Also, as we have seen, previous approaches to build and maintain process groups are not
scalable, and cannot be easily extended to operate on systems with large number of processes

or subject to dynamic membership (where the global state needs to be updated frequently).

At first sight, it may appear that some naive solutions would be enough to achieve such
goal. For instance, we could imagine a solution that would organize processes in a Chord-
like ring (Stoica et al., 2001), and then would split the ring in portions of the desired group
size. However, it is not possible to ensure that groups maintain a given target size in face of
churn without frequent global reorganizations of the groups, which is clearly a non-scalable
mechanism for systems with thousand or more nodes. All the remaining similar solutions we

have considered suffer from equivalent problems.

In face of these challenges, the work presented in this chapter addresses the problem of
dependable group creation and maintenance in large-scale P2P environment. In particular we
propose a generic service that allows nodes to structure themselves in an overlay network
of fault-tolerant process groups. The algorithm explores a topology management based on
a control approach, where constraints are imposed over the neighboring associations among
peers to achieve an unique topology. The solution presented here is fully decentralized and
self-organizing. The topology resulting from our algorithm is composed of cliques of peers (a
process group), where the members of each clique maintain connections to a large variety of
other cliques, ensuring the overall connectivity of the overlay (as depicted in Figure 3.1). This
is achieved without relying on neighboring constraints which take into consideration the iden-

tifiers of peers in the system. We have named our system CellFarm. As we will explain further

54 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

Figure 3.1: The CellFarm overlay. Smaller (red) dots represent physical nodes, while larger
(yellow) nodes represent virtual nodes.

ahead in the text, the global connectivity of the overlay is essential, not only to potentially en-
sure the correct operation of P2P services executed on top of CellFarm, but also to ensure the
correct operation of the algorithms employed to maintain the overlay topology despite failures,

or even churn scenarios.

To show that an overlay such as CellFarm can be in fact used in a large variety of scenarios,
we illustrate its application using a resource location service case study. This case study is
interesting because the work of Kun et al. (2009) shows that search can be improved if process
groups are provided, but give no algorithm to create or maintain these groups. We show that
CellFarm can be in fact used with the same goal, as we apply the resulting unstructured overlay
to perform one-hop replication of resource indexes replicated by nodes and exploit its topology

to disseminate efficient queries that search resources over those indexes.

3.1.2 Goals

The goal of CellFarm is to provide a support infrastructure for easing the task of achieving
fault-tolerance through replication and improve load distribution across peers in large-scale

P2P systems.

In order to achieve these goals we have developed an unstructured overlay management
protocol that exploits the control technique. In a nutshell, this translates into a protocol that
imposes (soft) constrains over the neighboring relations established among peers in a fully

decentralized fashion. As discussed in Chapter 2, the constrains imposed over the overlay

3.2. THE CELLFARM PROTOCOL 55

topology do not depend on node identifiers. This means that the resulting overlay topology
is impossible to predict, even if one has global knowledge of the system filiation. In fact, as
it will become clearer in the remaining of this chapter, the same set of peers may generate a
large number of distinct topologies which respect all imposed constraints. This ensures that
the overlay has enough flexibility to adapt itself in face of churn scenarios in a timely fashion,

while ensuring at the same time the maintenance of the overlay properties and topology.

In more detail, CellFarm adds constraints to ensure that peers self-organize into cliques
which in turn are highly and randomly connected among them. To promote the control of the
in-degree distribution across peers, overlay links that materialize the cliques of peers and the
connections among them are symmetric. This means that the overlay denoted by these links
can be seen as an undirected graph. Additionally, this ensures that, if cliques have approxi-
mately the same size, and if each peer has the same number of overlay links to other cliques, all
cliques have approximately the same reachability in the overlay i.e., all cliques have a similar
probability of being visited by a message randomly forwarded among peers. This is relevant

to ensure the correctness of the mechanisms used to enforce the overlay topology.

Each clique of peers can then be used as a natural infrastructure for supporting state repli-
cation. Examples of state replication are the replication of resource indexes (one-hop replica-
tion) for resource location services, or even the state of computational tasks being computed
on a public cycle-sharing infrastructure (similar to the Boinc platform (Anderson, 2004)). Addi-
tionally, as each peer maintains the same number of (incoming) overlay links from other cliques
in the overlay, there is a potential for achieving a natural load distribution among peers of a
single clique (i.e., all peers in each clique will, on average, receive and process the same number

of messages).

3.2 The CellFarm Protocol

In this section we provide the full specification of the CellFarm protocol. We start by introduc-
ing the rationale associated with the operation of the protocol, and then provide a high level
description of the interaction among the different micro-protocol which are employed to con-
trol the topology. The complete specification of the operation of these micro-protocols is then

provided and illustrated by pseudo-code for clarity when necessary.

56 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

3.2.1 Rationale

The main goal of CellFarm is to build and maintain a self-organizing unstructured overlay
network that exports a view of process groups to P2P services executed on top of it. Each
process group is achieved by a (fully-connected) cluster of peers named a Cell. The CellFarm

overlay has the following characteristics:

e Each peer belongs to a single Cell and each Cell has a probabilistic unique identifier

named cID;

e Each peer (eventually) knows the identity of all other members of its Cell (maintained by
a local partial view of the system i.e., a neighbor set named iView) and maintains a link to each

of these neighbors (thus, Cells are fully connected);

e Each peer maintains a number of links to other Cells (through a second neighbor set
named eView), which ensures the global connectivity of the CellFarm overlay. As we explain
further ahead this is a requirement to ensure the correct operation of the protocol that maintains

CellFarm topology.

The target size of each Cell is a protocol parameter; this allows this solution to be used by
a wide range of P2P services and applications with different replication and load distribution
requirements. A key aspect of our design is that CellFarm does not attempt to ensure that each
Cell has exactly the target size. Such goal would be very hard to achieve in large scale dynamic
environments (wWhere multiple joins, leaves, and failures happen concurrently) without resort-
ing to some sort of centralized coordination mechanism. Instead, the behavior of CellFarm is

controlled by the following set of parameters:

o Target Cell Size (CSTARGET): The target Cell size. Peers that belong to a Cell attempt to

prevent the further growth of that Cell as soon as it reaches a size of CSTARGET.

o Cell Max Size (CSMAX): If the size of a Cell becomes larger than threshold csMAX, Cell

members coordinate to split it into two new smaller Cells.

o Cell Minimum Size (CSMIN): If the size of a Cell becomes smaller than threshold CSMIN,
Cell members gradually try to abandon that Cell to join larger and more stable Cells, causing

the graceful fading of the small Cell.

Besides controlling the size of each Cell, CellFarm strives to promote the creation of multi-

3.2. THE CELLFARM PROTOCOL 57

ple, distinct, inter-Cell connections. The existence of these diverse connections are essential to
support the efficient exploration of the overlay through random walks, which is a key mecha-
nism employed by the protocol that builds and maintains CellFarm. Additionally, this brings
the following additional advantages: i) it makes the overlay robust to node and link failures;
i1) it reduces the clustering in the connections among Cells and finally; iii) it lowers the diam-
eter of the overlay (which eases the exploration of the overlay and also provides benefits for

applications that disseminate messages, such as resource location systems).

For this purpose, each node maintains an external view (i.e., a neighbor set) with identi-
fiers of other peers located in different Cells (called the eView, whose size 6 is also a protocol
parameter). As it will become clear later in the text, the fact that each Cell has a probabilistic
unique identifier eases the task of balancing inter-Cell neighboring relations among peers of a

given Cell, improving several properties of the overlay topology.

Each node maintains a link to all its internal neighbors (peers in the iView) and external
neighbors (peers in the eView). These links are maintained using TCP connections, which
are used to support the exchange of all messages between any pair of connecting nodes. The
use of TCP is motivated by two reasons: i) it allows the communication between nodes to
be network friendly as TCP flow control mechanisms are leveraged. Moreover, it allows to
model the system without considering message losses between nodes; ii) TCP is used as an
unreliable failure detector, as previously discussed by Leitao et al. (2007b). This is used, to
expedite the detection of peers that departed of failed (i.e., crashed), allowing the protocol to
make the adequate adaptations to ensure the correctness of the overlay topology in a timely

fashion.

Additionally, each node owns an additional neighbor set named global view or simply
gView, containing additional random peer identifiers. This view is used as a backup list to
regain the connectivity of the overlay in face of catastrophic failures, as well as to benefit the
exploration of the overlay by each node. For instance, for establishing additional inter-Cell
links. Notice that contrary to the remaining neighbor sets maintained by the CellFarm protocol,
no TCP connections are maintained to peers in the gView. This is motivated by three reasons: 7)
the contents of these views are updated periodically; ii) these views are not symmetric; and, 7ii)
the gView is not used to support direct communication among nodes, therefore no guarantees

are provided concerning the correctness of nodes which identifiers are in those views (although

58 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

Algorithm 1: CellFarm Protocol Overview

1: upon event Init do
trigger Join Procedure

N

W

every AT+ random(7) do
if #iView > CSMAX then trigger Divide Procedure
else if #iView < CSMIN then trigger Collapse Procedure

a

every AT do
7. if #eView < 0 then trigger External Neighboring Procedure

*

every AT3 with a probability p do
if #pdv = 0 then trigger Anti-entropy Procedure

g

the protocol that maintains them - a variant of the Cyclon protocol (Voulgaris et al., 2005) -

ensures that eventually failed participants are removed from all correct nodes gViews).

3.2.2 Algorithm

The CellFarm overlay is maintained by five micro-protocols that are described below. Col-
lectively, these micro-protocols strive to maintain the following properties (obviously, these
properties may be temporarly violated when the system is unstable, for instance, under high
churn, but are re-attained when the system stabilizes in a timely fashion): i) each peer belongs
to a single Cell; ii) each node has a link to each and every other peer in its own Cell; iii) each
peer has 6 links to nodes in different Cells; iv) no Cell is smaller than CSMIN and; v) no Cell is

larger than CSMAX.

Algorithm 1 provides a macroscopic perspective on the operation of the algorithm. The
five micro-protocols that maintain CellFarm execute the following procedures: a Join Procedure
used to join peers to the overlay; a Divide Procedure used to prevent the size of any Cell to
exceed the CSMAX threshold; a Collapse Procedure used to gracefully eliminate Cells of small
size; an External Neighboring Procedure in charge of promoting the creation of heterogeneous
inter-Cell links; and finally, a Cell Anti-entropy Procedure used to maintain the consistency of the
intra-Cell information which can also be leveraged to assist with the replication of data among

nodes of a Cell by a P2P service operating on top of CellFarm.

There are some dependencies among these micro-protocols. In particular, to reduce the cost
and increase the robustness and parallelism of the join procedure, the Cell size is allowed to

temporarily exceed its upper threshold, in face of multiple concurrent join requests. This trig-

3.2. THE CELLFARM PROTOCOL 59

gers (at some random time, to avoid global synchronization) the execution of the divide proce-
dure which will result in the creation of two new Cells with a size close or equal to CSTARGET.
However, node failures may bring a Cell size below the lower threshold triggering the Cell
collapse procedure. The thresholds that triggers the divide and collapse procedures should be
configured so that system oscillations are avoided. Failures also affect the number of correct
external neighbors maintained by each node. In this case, the external neighboring procedure
is used to locate new external neighbors, such that each node reaches the target external degree
(#). Finally, under churn nodes may have inconsistent views of their current Cell composition.
To address such scenarios (and also to help Cell members to balance their external neighboring
relations) every node periodically executes, with a given probability p, a gossip-based anti-
entropy procedure where it exchanges information with a random Cell neighbor (notice that
this procedure operates in a similar fashion to a rumor mongering service). The pdv set de-
noted in the algorithm represents the pending division vector, which is used to temporarily store
division proposal issued by other elements of the Cell. Verifying that this set is empty allows
the protocol to avoid spending resources to manage the filiation of a Cell which is about to
be divided into two new Cells. The use of this set is discussed in detail further ahead in this
chapter in section 3.2.2.2. In the following text a more detailed description of each component

of the CellFarm overlay management protocol is provided.

3.2.2.1 Join Procedure

The first peer to join the overlay only has to generate a random Cell identifier (Alg. 2, lines
3 — 4). Any additional peer, say new, sends a JOIN request to a node that is already part of the
overlay, called the contact peer (Alg. 2, lines 5—6). If the contact node is part of a Cell which size
is below CSTARGET, it immediately accepts the new node into that Cell (Alg. 2, lines 8 — 10).
Otherwise, the request is forwarded in the overlay using a limited length random walk, that
is preferably forwarded through links connecting nodes in different Cells (as to increase the
number of different Cells visited by it). The random walk terminates when a Cell with size
smaller than CSTARGET is visited (Alg. 2, line 16). If the time to live of the random walk expires
before an appropriate Cell is found, the new node is added to the Cell where the random walk

terminates, regardless of its size (i.e., even if the Cell size is above CSTARGET).

When a particular peer, say new, is accepted into a Cell, a JOINREPLY message is sent to

60 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

Algorithm 2: Join Procedure

1: upon event Init do

2: cD<+— L1

3: if contact = L

4: cID <— generate unique ID

5: else

6: trigger Send(JOIN, contact)

7: upon event Receive(JOIN, newNode) do

8: if #iView < CSTARGET then

9: trigger Send(JOINREPLY, sender, cID, iView)
10: iView «— iView U {sender}

11: else

12: n <— selectRandom(eView U iView)

13: trigger Send(FORWARD]OIN, n, sender, MAXTTL)

14: upon event Receive(FORWARDJOIN, sender, newNode, ttl) do
15: ttl«—ttl —1
16: if #iView < CSTARGET or ttl = 0 then

17: trigger Send(JOINREPLY, newNode, cID, iView)
18: iView «— iView U {newNode }

19: else

20: n «— selectRandom((eView U iView) \ sender)
21: trigger Send(FORWARDJOIN, 1, newNode, ttl)

22: upon event Receive(JOINREPLY, sender, id, view) do
23: cdD<+—id

24: iView «— view U {sender}

25: forall n € view do

26: trigger Send(NEIGHBORINGREQUEST, #, cID)

27: upon event Receive(NEIGHBORINGREQUEST, sender, id) do
28: if cID = id then

29: iView <— iView U {sender}
30: else
31: trigger Send(DISCONNECTREQUEST, sender)

it by the peer that accepts the join request i.e., the node where the random walk terminates
(Alg. 2, lines 9 — 11 and 17 — 18). Upon receiving the JOINREPLY message, peer new uses the in-
formation contained in it to update its cID identifier and to establish neighboring relations with
all remaining members of the Cell by sending NEIGHBORINGREQUEST messages (Alg. 2, lines
23 — 26). Nodes that receive this message validate if the new node is joining the correct Cell (by
comparing their own Cell identifier with the identifier carried in the message), in which case
they add its identifier to their local iView. Otherwise they refuse the request by replying with
a DISCONNECTREQUEST message (Alg. 3, lines 27 — 31). Upon the reception of a DISCONNEC-
TREQUEST message, a node removes the sender of the message from the iView or eView and

closes the TCP connection maintained to that node.

As the reader can probably guess, if the identifier of that Cell is updated between the trans-

mission of the JOINREPLY and the peer new establishing the overlay links for its Cell neighbors,

3.2. THE CELLFARM PROTOCOL 61

new’s requests will be rejected by those peers resulting in new becoming disconnected from the
overlay. However, such scenario, despite being very improbable, is circumvented by having

the peer rejoin the overlay (using an element of its gView as a contact peer).

3.2.2.2 CellFarm Divide Procedure

Algorithm 3: Divide Procedure

upon event CHECKCELLSIZE TIMER do
if cID # L and pdv = 0 then

if #iView > csMAX and An: n € iView: n.nID < nID then
ID, <— get new unique id
IDy, <— get new unique id
a «— {myself } U SelectHalf(iView)
b +— iView \ {a}
pdv <— {CELLDIVISION (myself, cID, IDq, IDy, a, b)}
forall n € iView do

trigger Send(CELLDIVISION, n, cID, IDg, IDy, a, b)

setup timer (EXECUTECELLDIVISION TIMER, RTT %2)

= N A S o

= e

12: upon event EXECUTECELLDIVISION TIMER do
13: if pdv # 0 then

14: s+—s e pdv— Ax: x € pdv A x.sender.nID < s.sender.nID
15: if myself € s.a then

16: forall n € iView do

17: ifn € s.a then

18: trigger Send(CELLUPDATE, 1, cID, s.ID, true)
19: else if position(myself,s.a) = position(n, s.b) then
20: trigger Send(CELLUPDATE, n, cID, s.IDy, false)
21: iView <— iView \ {n}

22: eView «— eView U {n}

23: else

24: trigger Send(DISCONNECTREQUEST, 1)

25: iView <— iView \ {n}

26: cID <+— s.IDg

27: else if myself € s.b then

28: forall n € iView do

29: ifn € s.b then

30: trigger Send(CELLUPDATE, n, cID, s.IDy, true)
31: else if position(myself,s.b) = position(n, s.a) then
32: trigger Send(CELLUPDATE, (n), cID, s.IDy, false)
33: iView <— iView \ {n}

34: eView «— eView U {n}

35: else

36: trigger Send(DISCONNECTREQUEST, 1)

37: iView <— iView \ {n}

38: cID «— s.IDy

39: pdv «—0

This procedure is triggered when the size of a Cell exceeds the threshold CSMAX and its
purpose is to split a Cell into two smaller Cells. The intuition for using Cell division as the
mechanism to generate new Cells is to avoid the creation of a large number of small (poten-

tially unitary) Cells. By splitting a large Cell in two (similar to what living cells do) one can

62 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

Algorithm 4: Cellfarm Divide Procedure (Continuation)

40: upon event Receive(CELLUPDATE, sender, ID,;4, IDy e, isCell) do
41: if isCell = true then

42: if cID # IDyeq then

43: if pdv = 0 or cID # ID,;4 then

44: trigger Send(DISCONNECTREQUEST, sender)
45: iView «— iView \ {sender}

46: else

47 if sender € eView then

48: if sender.cID # IDj, ¢, then

49: if IDy e = cID then

50: eView «+— eView \ {sender}

51: iView «— iView U {sender}

52: else

53: update local information on cID of sender
54: if pdv = 0 or sender ¢ iView then

55: trigger Send(DISCONNECTREQUEST, sender)

56: iView «— iView \ {sender}

57: if pdv # 0 then

58: trigger EXECUTECELLDIVISION TIMER

59: upon event Receive(CELLDIVISION, sender, ID, IDa, IDb, a, b) do
60: if cID = ID then

61: if pdv = 0 then
62: setup timer (EXECUTECELLDIVISION TIMER, RTT %2)
63: pdv «— pdv U {CELLDIVISION (sender, cID, IDa, IDb, a, b)}

generate two stable and independent Cells, with a low impact on the overlay topology and
global connectivity. This allows the operations being executed and the data stored at the orig-
inal Cell to be carried out by one of the new Cells with no overhead, while the remaining new

Cell can be used to perform other operations and/or store new data.

The procedure is initiated by the Cell member with the smallest identifier when it detects
that the size of its local iView is equal or above the parameter CSMAX (remember that similar to
what is done in classical DHTs, each node in our system owns a probabilistic unique identifier
dispite the fact that these identifiers are not used to define the overlay topology). This condition
is verified independently and periodically by each peer every interval AT+ random(7) (Alg. 1,
lines 3 — 5). This peer then generates two random Cell identifiers (namely ID, and ID;) and
splits the current Cell membership into two ordered sets a and b, sending this information to

the remaining Cell members in a CELLDIVISION message (Alg. 3, lines 4 — 11).

When a CELLDIVISION message is received it is put in quarantine, for a period of time
that should be greater than twice the maximum round trip time (RTT) between the sender and

every other peer of that Cell>. The message is stored in a set named pending division vector,

2As TCP connections are maintained to all peers in a node’s iView, the RTT value can be easily calculated by

3.2. THE CELLFARM PROTOCOL 63

or simply pdv. The quarantine period aims at avoiding that multiple concurrent Cell divisions
are initiated when the Cell view is not fully consistent (and more than one member of the
Cell believes to have the lowest node identifier). At the end of the quarantine period, the
CELLDIVISION message issued by the node with smallest identifier is processed by each peer
in the Cell while the remaining are discarded (Alg. 3, lines 12 — 39). Notice that the quarantine
period might be hard to calculate in highly dynamic environments. However in situations
where this mechanism fails (wWhich was shown experimentally to be very improbable), it only
results in the temporary disconnection of a very small number of peers. These nodes can rejoin
the overlay, for instance by re-executing the join procedure using a participant extracted from

the gView as a contact node.

When a CELLDIVISION message is processed by a node d, it adopts the Cell division pro-
posal included in that message. Thus, it updates its local Cell identifier (cID). This update
results in the peer updating its cID to ID, if its identifier is found in set a , and to ID, if its iden-
tifier is instead included in the set b of the division proposal. Moreover, d sends a CELLUPDATE
message to all nodes of its new Cell to accelerate the convergence of the algorithm. Addition-
ally, node d sends a DISCONNECTREQUEST to all nodes in his current iView that do not belong
to its new Cell, except to the node d’ that occupies the same position in the complementary Cell
membership set enclosed in the CELLDIVISION message (sets a and b described previously).
To node d’, d sends a request to establish an inter-Cell link; this ensures that the two new Cells
remain well connected (this is achieved by sending a CELLUPDATE message with a special
flag activated). Notice that peers may be required to disconnect from an external neighbor to
add the previous Cell neighbor to the eView set, in the case where they already had ¢ external
neighbors. The large number of external connections created between both Cells is reduced as

a result of the anti-entropy procedure described further ahead.

Because the Cell identifier of peers is updated as the result of the division process, at the
end of this process each peer also send to their external neighbors a notification of their new
Cell identifier (with the exception of the peer added to the eView from the iView due to the

division process as described above).

accessing the RTT estimates kept by TCP and selecting the largest value, although a conservative static configuration
(e.g., 1 second) is enough to ensure the correct operation of the protocol.

64 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

Algorithm 5: CellFarm Collapse Procedure

upon event CHECKCELLSIZE TIMER do
if #iView < CSMIN then
with a probability of: (1 — #iView/CSMIN) do
n <— selectRandom(eView U gView U iView)
trigger Send(RELOCATEREQUEST, n, myself, cID, TTL)

6: upon event Receive(RELOCATEREQUEST, sender, node, ID, ttl) do
7: ttl «— ttl —1
8 if cID # ID and #iView < CSTARGET then

9: iView «— iView U {node}

10: if ttl > O then

11: trigger Send(RELOCATEREPLY, node, cID, iView)
12: elseif ttl > 0 then

13: n <— selectRandom(eView U iView)

14: trigger Send(RELOCATEREQUEST, n, node, 1D, ttl)

15: upon event Receive(RELOCATEREPLY, sender, id, reloc_view) do
16: if #iView < CSMIN then

17: forall n € iView do

18: trigger Send(DISCONNECTREQUEST, 1)

19: iView «— iView \ {n}

20: forall n: n € eView A n.cID = id do

21: trigger Send(CELLUPDATE, n, cID, id, false)
22: eView <— eView \ {n}

23: iView «— iView U {n}

24: cID +—id

25: forall n: n € reloc_view A n ¢ iView do

26: trigger Send(NEIGHBORINGREQUEST, #, cID)
27 else

28: trigger Send(DISCONNECTREQUEST, sender)

3.2.2.3 Collapse Procedure

This procedure is used to gracefully disband a Cell whose size has fallen below the threshold
parameter CSMIN, by migrating its members to other (larger and therefore more stable) Cells.
This procedure is decentralized. Each node periodically verifies the size of its current Cells (by
inspecting the contents of its iView), if the size of the Cell is below CSMIN, it takes the initiative
to relocate itself to another Cell, resulting in the collapse of the older one. To avoid the abrupt
collapse of a Cell, nodes only decide to initiate the relocation procedure with a given probability
p, which increases as the size of the Cell decreases. That probability is provided by the equation
(1—#iView/CSMIN) (Alg. 5, line 3). To do this, a RELOCATEREQUEST message is propagated
in a manner similar to the JOIN request described above (Alg. 5, lines 6 — 14). Notice however,
that if the local Cell size has become stable during the time required to execute this procedure
(i.e., if the size of the Cell has grown to a value equal or above CSMIN), the peer that issued the
relocation request terminates the procedure by issuing a DISCONNECTREQUEST message to the

node that replied to it with a RELOCATEREPLY message (Alg. 5, line 28).

3.2. THE CELLFARM PROTOCOL 65

Algorithm 6: CellFarm External Neighboring Procedure

1: upon event CHECKEXTERNALCONNECTIVITY TIMER do
2: if #eView < 0 then

3 k+—0

4: forall n € eView do

5: k +— kU {n.cID}

6 d +— selectRandom(eView U iView cup gView)

7 if eView = () then

8 trigger Send(EXTERNALREQUEST, d, myself, cID, k, true, TTL)
9: else

10: trigger Send(EXTERNALREQUEST, d, myself, cID, k, false, TTL)

11: upon event Receive(EXTERNALREQUEST, sender, node, ID, k, empty, ttl) do
12: ttl«— ttl —1
13: if cID#ID and cID¢k and #eView < 6 and An€ eView: n.cID=ID do

14: eView «— eView U {node}

15: trigger Send(EXTERNALREPLY, node, cID, ID)
16: elseifttl >0

17: d +— selectRandom(eView U iView)

18: trigger Send(EXTERNALREQUEST, d, node, ID, k, empty, ttl)
19: else if empty = true

20: n <— selectRandom(eView)

21: trigger Send(DISCONNECTREQUEST, 1)

22: eView <— eView \ {n}

23: eView «— eView U {node}

24: trigger Send(EXTERNALREPLY, node, cID, ID)

25: upon event Receive(EXTERNALREPLY, sender, ID, ID},) do
26: if #eView = 0 then

27: trigger Send(DISCONNECTREQUEST, sender)

28: else

29: eView «— eView U {sender}

30: if IDy, # cID then

31: trigger Send(CELLUPDATE, sender, IDy,, cID, false)

If no suitable Cell is found in the random walk performed by the RELOCATEREQUEST mes-
sage, the node remains in his current Cell. It will later attempt to re-execute this procedure if

its current Cell size does not stabilizes meanwhile.

3.2.2.4 External Neighboring Procedure

To ensure that CellFarm remains highly connected, and that random walks performed to main-
tain the overlay have an increased chance of success, the protocol attempts to maintain at each
node a pre-defined number 6 of external neighbors, i.e., links to peers located in other Cells®.
Thus, a node that has fewer than ¢ external neighbors actively tries to establish external links
by disseminating an EXTERNALREQUEST message using a fixed-length random walk, that tries

to locate a suitable neighbor in a different Cell. A node is considered to be a suitable external

*To ensure the correct operation of random walks, 6 should be equal or greater to 2 as to ensure that a random
walk received from an external link can be forwarded, if necessary, through another external link.

66 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

neighbor if it belongs to a different Cell, has fewer than 6 external neighbors, and does not have
another external neighbor belonging to the Cell of the peer that issued the request, nor to other
Cells to which that peer is already connected (in order to promote inter-Cell link heterogeneity).

Alg. 6 depicts this mechanism.

In the particular case where the source of the EXTERNALREQUEST message has no external
neighbor, a special flag (named empty) is set to true in the request propagated by the random
walk (Alg. 6, lines 7 — 8). In this case, if the random walk terminates before a suitable neighbor
is found, the last visited node becomes a neighbor of the source, even if it already has 6§ external
neighbors and needs to disconnect from a random external neighbor to maintain a number of

external neighbors equal to 6 (Alg. 6, lines 19 — 24).

3.2.2.5 Anti-entropy Procedure

In face of concurrent joins and crashes, the iView maintained by different nodes in the same
Cell may diverge. To increase the intra-Cell consistency, a gossip-based anti-entropy procedure
is executed inside the Cell. Periodically, with a given probability p, every node n selects another
node p in its Cell and sends to it a message containing its own view of the Cell membership.
This allows p to detect missing nodes in its iView even with a small value of p; in our exper-
iments we determined that a p value of 0.1 is adequate. Moreover, if p detects some missing
nodes in n’s iView it replies to n with a similar message. Notice that a similar overhead could
be achieved by using a probability p of one and configuring a larger period of time between the
execution of this procedure, however, our scheme allows to have faster convergence, avoiding

spontaneous synchronization among nodes.

Additionally, the anti-entropy procedure is also exploited to promote the diversity of over-
lay links connecting different Cells, by allowing nodes in a Cell to coordinate among them-
selves to avoid the maintenance of redundant external neighboring relationships to peers in
the same Cell. To that end, when executing the anti-entropy procedure, a node n, also sends to
its peer a list containing the Cell identifiers of all its external neighbors. If a node p receives two
consecutive anti-entropy messages that contain a Cell identifier of one of its external neighbors,
say e, p removes node e from its eView by sending a DISCONNECTREQUEST message. The re-
ception of two messages is required to promote some stability in the overlay network topology.

This process allows to reduce the clustering coefficient among Cells which benefits the routing

3.3. CASE STUDY 67

of random walks in the overlay, and promotes a lower overlay diameter.

3.2.3 Increasing Fault-Tolerance

As described earlier, to increase the fault-tolerance of CellFarm, we use an approach similar to
the one described by Leitao et al. (2007b), i.e., we augment the state of each peer with a random
partial view of the entire system, named the gView. The gView is maintained using a low
cost background protocol, based on the exchange of shuffle messages among random pairs of
nodes. These messages carry samples of node identifiers extracted from both the gView, iView,
and eView of the sender. These identifiers are used to update the contents of the gView of the

receiver (similar to the operation of the Cyclon protocol (Voulgaris et al., 2005)).

Moreover, whenever a node has to remove a correct peer from its iView or eView, or when
it receives a request sent by a node which is not in one of those sets, that node identifier can be
added to the gView. Notice that the gView can also be used to facilitate the exploration of the
overlay network by peers trying, for instance, to find additional external neighbors (i.e. nodes

that are associated to different Cells).

As discussed previously, the gView is not used to support direct communication between
participants of the system. The gView is managed by a low complexity protocol and, contrary
to the remaining partial views used by the CellFarm protocol (i.e., the iView and the eView) no

constraints are imposed on its contents.

3.3 Case Study

As noted previously, there are many examples in the literature of large-scale distributed sys-
tems where process groups are used to achieve higher reliability and better performance (by
distributing the load among the group members). The previous cited examples include dis-
tributed grid computing (Liu et al., 2010), highly-resilient DHTs (Glendenning et al., 2011), and
unstructured search (Kun et al., 2009). To experiment with CellFarm on all these applications
is outside the scope of the thesis. Instead, we focus on a single case study namely, we use the
notion of process groups provided by CellFarm to improve a resource location system based
on an unstructured overlay network and on one-hop replication (Chawathe et al., 2003). Fur-

thermore, we address the case where the service must exhibit full coverage i.e., that each query

68 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

should be compared against the resource indexes of almost all nodes to ensure a quasi-perfect

recall rate?.

We show that an unstructured overlay such as CellFarm makes the idea of using process
groups to improve search, not only practically viable, but also flexible. In our scheme, peers
are not restricted to store content based on the constraints of consistent hashing. Instead, nodes
can store any content without restrictions. Then, as suggested in (Kun et al., 2009), nodes per-
form replication to the members of their process group. However, thanks to the topological
properties of CellFarm, given that each Cell is fully connected, replication can be achieved by

relying on a structured variant of one-hop replication.

3.3.1 Search Strategies

As noted in Chapter 2, there are basically two possible search strategies in unstructured sys-
tems: flooding and random-walks. Furthermore, these basic strategies can have uninformed or
informed variants. In the basic uninformed variant, no additional information is maintained
about the (potential) location of resources. The informed variants improve on those techniques
by maintaing additional routing information (for instance, by leveraging the results of past

queries (Yang & Garcia-Molina, 2002; Tsoumakos & Roussopoulos, 2003)).

Naturally, there are many aspects that affect the performance of informed variants: the
data distribution (how many items are rare and how many items are popular), the query distri-
bution (how many queries search for popular items, temporal locality, etc), the query routing
strategy, the amount of routing information maintained at each node, and, of course, the over-
lay topology. Therefore, the degree of success of informed strategies is heavily dependent on

the workload characterization.

To illustrate the benefits of the Cell-based topology of CellFarm to improve one-hop repli-
cation, we need to decouple our evaluation from the factors above. Therefore, we have opted
to use an uninformed strategy, more precisely, flooding, since this technique is oblivious to fac-
tors such as data distribution or query workload characterization. As a result, differences in
the performance of such strategy on different overlays result exclusively from the topological

properties, which is the focus of this contribution.

*In this context, we consider that a query has full coverage, if it is compared against at least, 99.9% of all nodes
resource indexes.

3.3. CASE STUDY 69

Therefore, we provide results for two systems that use one-hop replication and flooding.
The first, denoted as the baseline, makes no use of the notion of process groups when replicating
the indexes or performing the queries. The other, denoted cell-aware, exploits the fact that
processes are organized in groups when performing replication and disseminating queries.

Each of these systems is described below with more detail.

3.3.2 Baseline Strategy

In the baseline system, nodes are organized in a flat unstructured network where no notion of
process group is provided. Each peer replicates its own resource index to all its direct overlay
neighbors. Then, when a query is injected in the system by a given participant, it is sent to all
its neighbors. In turn, these neighbors also forward the query to all their overlay neighbors.
This process is repeated for a maximum number of times to avoid queries to loop indefinitely
in the network; this is controlled by a parameter named Query Time To Live or simply QTTL.
When a query is first injected in the system it is tagged with an initial QTTL value, which is
decremented whenever the query is retransmitted (i.e., forwarded in the overlay). A query that

has reached a QTTL value of zero is no longer retransmitted.

Flooding protocols benefit from one-hop replication techniques, as this allows them to
avoid the execution of the last forwarding hop, which accounts for a large fraction of the mes-

sages generated by these protocols (Chawathe et al., 2003).

Flooding ensures complete coverage without requiring any routing support as long as the
QTTL value is equal or greater than the overlay diameter minus one. Unfortunately, it has
a very high message cost as many redundant messages are generated. Therefore, practical
systems that use flooding often sacrifice complete coverage by configuring QTTL with small
values (therefore, limiting the exploration to the vicinity of the query source and limiting the

recall rate of the resource location service).

3.3.3 Cell-Aware Strategy

The baseline strategy described above is oblivious to the overlay topology. We now propose an
adaptation of this technique that exploit the notion of process groups and the unique properties

of the CellFarm topology.

70 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

For this, we require nodes in each Cell to maintain a replicated consolidated index of all re-
sources stored by them (which is a form of limited or structured one-hop replication in which re-
source indexes are only replicated to the overlay neighbors of a node which belong to the same
Cell). The replication of indexes among nodes of any given Cell can be easily implemented
by piggybacking information regarding the local indexes on the anti-entropy mechanism de-
scribed in Section 3.2.2.5. This approach is simple and yields good results, as local indexes tend
to have a comparatively low update rate. It would be possible to design more sophisticated
resource index replication strategies, but these are orthogonal to the main focus of the thesis in

general and this contribution in particular.

Our Cell-Aware routing strategy allows queries to visit every Cell in the overlay while
minimizing the number of nodes of each Cell that are involved in the processing (and ideally
the forwarding) of each query, therefore significantly improving the load-distribution of the
system. For that purpose we tag queries with the identifiers of nodes (or Cells in the case of
CellFarm) which already processed the query (this can be efficiently implemented using Bloom

Filters)®.

In detail, Cell-Aware flooding operates as follows: When a node receives a query (for the
tirst time) it decreases the QTTL. If the query was received from a neighbor in a different Cell
(i.e. in that node’s eView) the node processes the query, after which it adds its own Cell ID to
the bloom filter associated with (that copy of) the query. If the QTTL is above zero, that node
forwards the query to all participants in that node’s eView that do not belong to Cells already
visited by the query. If the QTTL is above one, that node also selects half of the neighbors in its

iView (rounded up) to which it also forwards the query.

A node which receives a query from a neighbor in its own Cell (i.e. in that node’s iView)
never processes it, and only forwards it to all neighbors in it’s own eView that do not belong
to Cells already visited by the query. If a node receives a query that was already processed or

forwarded by it, it simply drops that message.

Notice that by sending the query to half the elements of the Cell we achieve two purposes:

i) only half the nodes in the Cell are required to spend resources forwarding that query; and

>Evidently, there is not a global bloom filter for each query, each individual copy of a query contains a bloom
filter filled the identifiers of nodes (or Cells) that were in the path performed by that specific copy of the query. The
bloom filters of different copies of the query diverge each time the query if forwarded over the overlay.

3.4. EVALUATION 71

ii) those nodes can store locally the identifier of the query, which allows them to discard any
additional copy they might receive in the future. This will limit the amount of system resources

that would be consumed for processing redundant copies of queries.

3.4 Evaluation

We have performed an experimental evaluation to assess the topological properties of Cell-
Farm; the benefits of its topology for query routing in the context of the resource location ser-
vice case study; and the resilience of the overlay to failures. For this purpose we have used a
combination of extensive simulation and a prototype deployment over the PlanetLab testbed®,

as follows:

3.4.1 Experimental Setting

For simulations, the PeerSim simulator (Montresor & Jelasity, 2009) was employed. For this
experimental setup implementations of both the CellFarm protocol, as well as an unstructured
overlay enriched with one-hop replication of resource indexes stored in individual nodes were
developed and tested. All these implementations use the event driven engine of PeerSim. All
experiments with PeerSim were conducted in a system composed of 10.000 nodes. PeerSim
simulations use a virtual clock that coordinates the delivery of events to nodes (and protocols).
The virtual time is measured in time units (TU); each TU is equivalent to 1 millisecond in a
real deployment. Message delay was configured to be uniformly distributed between 100 and

1,000 time units (TU) accordingly to typical latencies observed in the PlanetLab testbed.

For the PlanetLab experimental deployment, a prototype of CellFarm in the Java language
was developed. The prototype was implemented following the pseudo-code and descriptions
presented in this chapter, and required approximately 1700 lines of code. For these experiments
251 PlanetLab nodes scattered throughout the World were used for deploying and asserting the

performance of the prototype.

®http://www.planet-lab.org/

72 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

3.4.1.1 Tested Topologies

To provide a better understanding on the advantages and disadvantages of CellFarm, the per-
formance results obtained with CellFarm are compared with those obtained with a flat unstruc-
tured overlay. It is relevant to remember the reader that although CellFarm relies on probabilis-
tic unique node identifiers (similar to DHT’s), its topology is random in nature (as nodes are
not restricted to establish neighboring relations by node identifiers) thus, the comparison with
an unstructured overlay is the most adequate. This evaluation section includes comparative
results between the CellFarm overlay and an unstructured overlay constructed by an enriched

version of the Scamp protocol (Ganesh et al., 2003).

The use of Scamp is motivated by the following observations: i) the complete specification
of Scamp is published; ii) Scamp maintains stable neighboring relations, being adequate to
the use of TCP as transport protocol; and iii) Scamp produces an overlay which has similar

properties to overlays typically used in unstructured resource location systems.

To make the comparison with CellFarm fair, the basic operation of Scamp was adapted to
ensure that it could rely on the same mechanism that are employed for maintaining CellFarm.
These mechanisms do not change the topological properties of Scamp, but make the signal-
ing cost, required to maintain the overlay, comparable with that of CellFarm. The changes

performed are as follows:

- Scamp was modified to use TCP both to provide point-to-point reliable communication
as well as to use TCP as an unreliable failure detector, removing the need for the heartbeat

messages usually employed by Scamp.

- Scamp was enriched with a global view similar to the one employed by CellFarm, which

can be used to recover from failures (by selecting nodes to whom send a Subscription request).

- Scamp was also enriched with a scheme similar to the one employed by CellFarm to

manage the contents of its gView.

Both protocols rely on a gView of size 30. In the following, we provide some details about

the configuration of these protocols.

CellFarm Configuration The CellFarm parameters that control the Cell size were configured

as follows: CSTARGET was set to 11; CSMAX was set to 16; and CSMIN was set to 8. The param-

3.4. EVALUATION 73

eter § was set to 4, so that each node tries to maintain 4 external neighbors. All random walks
used by overlay maintenance protocols have a time to live of 10 hops. Additionally the time
parameters associated with the periodic tasks of nodes were set as follows: AT} and AT, were
set to 20s/20.000 TU, while AT was set to 10s/10.000 TU. The random factor varies between
0 and 20s/20.000 TU (Alg. 1 depicts the effect of these parameters in the CellFarm protocol

operation).

Scamp Configuration The Scamp protocol was configured with a c value of 3 (this parameter
is related to the fault tolerance of the Scamp protocol). This ensures that each node maintains
an average number of neighbors which is slightly above to the number maintained by Cell-
Farm. To ensure fairness, the periodic operations of Scamp were configured to use similar time

intervals to those employed by CellFarm (presented above).

3.4.1.2 Query Flood Strategy

To measure the effect of the CellFarm topology we have implemented two resource location
services that differ on the query routing mechanism employed. One relied on the baseline
flood protocol and the other used the cells-aware variant of the query routing algorithm, as

described previously.

The fact that peers require some amount of time to process a query is modeled in simula-
tions by introducing a processing delay (PD) after the query is received and before the query
is forwarded. This delay is not fixed; instead, it increases linearly with the number of resource
indexes replicated by a node. We have set the PD to 0.1s/100 TU for each (individual peer)

index, in both tested scenarios.

The query dissemination protocols were configured to use a QTTL of 5 for both CellFarm
and the unstructured overlay. We have experimentally determined that this was the minimum
value for the QTTL parameter, which enabled each system to achieve a query coverage equal

or above 99.9% (hence, an approximately perfect recall rate for the resource location service).

3.4.1.3 Number of Experiments

All results presented in here represent an average of results extracted from 5 independent exe-

cutions of each experience. Confidence intervals are omitted from figures for readability, how-

74 CHAPTER 3. CONTROL THE TOPOLOGY: CELLFARM

ever these intervals were calculated for a confidence of 95% and they were similar across all

experiments and protocols.

3.4.2 Overlay Properties

We start by presenting experimental results for the properties of the CellFarm overlay. We first
show how these properties evolve in steady state i.e., where no change to the global member-
ship of the system occurs. We then discuss the properties of the resulting ov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>