
TESRAC: A Framework for Test Suite Reduction
Assessment at Scale

João Becho
LASIGE & FCUL

University of Lisbon
fc42103@alunos.fc.ul.pt

Frederico Cerveira
University of Coimbra, CISUC,

Department of Informatics Engineering
fmduarte@dei.uc.pt

João Leitão
NOVA LINCS & FCT

NOVA University of Lisbon
jc.leitao@fct.unl.pt

Rui André Oliveira†
NOVA LINCS & FCT

NOVA University of Lisbon
rac.oliveira@fct.unl.pt

Abstract—Regression testing is an important task in any large
software project, however as codebase increases, test suites grow
and become composed of highly redundant test cases, thus
greatly increasing the time required for testing. To solve this
problem various test suite reduction tools have been proposed,
however their absolute and relative performance are unclear to
their prospective users, since there is a lack of a standardized
evaluation or approach for choosing the best reduction tool.
This work proposes TESRAC, a framework for assessing and
comparing test suite reduction tools, which allows users to
evaluate and rank a customizable set of tools in terms of reduction
performance according to criteria (coverage, dimension, and
execution time), and which can be configured to prioritize specific
criteria. We used TESRAC to assess and compare three test suite
reduction tools and one test suite prioritization tool that has been
adapted to perform test suite reduction, across eleven projects of
various dimensions and characteristics. Results show that a test
suite prioritization tool can be adapted to perform a adequate test
suite reduction, and a subset of tools outperforms the remaining
tools for the majority of the projects. However, the project and
test suite being reduced can have a strong impact on a tool’s
performance.

Index Terms—software testing, test suite reduction, test suite
minimization, test case prioritization, evaluation

I. INTRODUCTION

Software testing is the de facto approach for uncovering

software faults, also known as software bugs, and is nowadays

an essential step during software development. A software

test consists of two basic elements: an input that executes in

the system under test (SUT) and a definition of the expected

outcome [1]. Test suites are a set of predefined test cases (i.e.

software tests), which are executed sequentially in order to un-

cover faults in the SUT. Software testing is a common practice

in industry, with many companies nowadays integrating testing

as part of the development and evolution cycles, for instance

by resorting to continuous integration [2].

While companies have to manage a plethora of software

projects, including thousands of commits made to the source

code on a daily basis, at the same time they need to maintain

an appropriate software testing infrastructure. One task of

such an infrastructure is to manage all the test suites that

are executed before accepting any changes to the software or

before publishing new releases. Companies usually perform

†: Part of this work was conducted while Rui André Oliveira was affiliated
with the LASIGE laboratory and the University of Lisbon.

these tests to check if changes in existing modules behave as

expected and that the unchanged modules did not experience

an impact in functionality (i.e. creating a “regression”) [3].

This particular process is referred to as regression testing.

A common challenge in this context is ensuring that test

suites remain up-to-date (i.e., new test cases are added and

outdated test cases are removed) and that these can be ef-

ficiently executed, while ensuring the desired code coverage

independently of frequent changes to the software. As projects

grow in terms of lines of code, the number of test cases

inevitably increases, resulting in some lines of code (i.e.,

execution paths) being covered by multiple test cases. This

redundancy creates inadvertently large test suites that are

difficult to maintain and whose execution might become too

costly – both in terms of time and monetary cost – hindering

the evolution of software. It has been previously reported

that testing software containing approximately 20, 000 lines of

code requires seven weeks for the entire test suite to run [4],

and also that, in large and complex software infrastructures,

removing one redundant test case may save thousands of

dollars in testing resources [3].

In recent years two key techniques have been associated

with regression testing: i) test suite reduction (TSR) and ii)
test case prioritization (TCP) [5]. The goal of test suite reduc-

tion (also known as minimization) is to find a reduced test suite

by eliminating redundant test cases according to a number of

criteria [6]; test case prioritization aims to define the ordering

of test cases based on a particular goal, such as maximizing

code coverage or to improve fault detection effectiveness [6].

Although these two techniques have fundamentally different

goals, a TCP tool can rank test cases and a reduced test

suite can be defined by discarding the less relevant test cases.

Software testers have at their disposal a large number of tools

that have been proposed in recent years to lower the burden

of maintaining test suites small and efficient.

Despite the cost benefits of TSR, software testers who work

in safety-critical systems are often reluctant to omit test cases

due to concerns that the fault detection capabilities of the

test suite might be affected [3]. This is understandable and,

partially, explainable due to the lack of tools that allow to

effectively and systematically assess and compare existing

TSR tools. This leads testers to be required to download each

TSR tool, install and configure its dependencies, and execute

174

2022 IEEE Conference on Software Testing, Verification and Validation (ICST)

978-1-6654-6679-0/22/$31.00 ©2022 IEEE
DOI 10.1109/ICST53961.2022.00028

20
22

 IE
EE

 C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Te
st

in
g,

 V
er

ifi
ca

tio
n

an
d

Va
lid

at
io

n
(IC

ST
) |

 9
78

-1
-6

65
4-

66
79

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

ST
53

96
1.

20
22

.0
00

28

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

each tool for each test suite for every project in which they

are involved. Even after going through these steps, testers will

still have to select the most appropriate tool for each project

considering a plethora of criteria: the size of the reduced test

suite, the code coverage, and the time taken to execute the test

suite, which can be cumbersome and error-prone.

Existing studies surveying TSR tools focus on comparing

the technical aspects of the employed algorithms [5], [6],

disregarding an empirical evaluation of their effective per-

formance in real-world projects. To the best of our knowl-

edge, there is not a well-defined approach for evaluating

the effectiveness of TSR tools. A framework for assessing

and comparing TSR tools should: i) enable software testers

or practitioners to painlessly select the best TSR tool for a

particular project; ii) enable researchers in the field of TSR to

understand how their tool competes with the state of the art and

promote an healthy competition; and iii) enable practitioners

to effectively derive efficient and adequate test suites for their

projects. We note that the existence of such framework can

significantly contribute to promote an healthy competition

between existing and upcoming TSR techniques/tools and

advance the current state of the art.

In this paper we present TEst Suite Reduction Assessment

at sCale (TESRAC), a framework for assessing and comparing

the effectiveness of TSR tools. TESRAC applies a novel

approach that collects different characteristics related with the

effectiveness and performance of the tools on test suite reduc-

tion. These characteristics include Dimension, Time Taken to
Execute and Coverage, which are used to compute a Reduction
Score using a multi-criteria decision making technique. Our

current TESRAC implementation supports assessing the TSR

efficiency of three Java tools: EvoSuite [7], Testler [8], and

Randoop [9]. We also included support for Kanonizo [10], a

known TCP tool, where our framework adds a layer to discard

the test cases considered less relevant. In this way we treat

Kanonizo as a TSR tool, and see how it compares to the native

TSR tools. TESRAC internal architecture is modular and

extensible, supporting the integration of new TSR and TCP

tools. TESRAC is available as an open-source tool 1, enabling

third-party TSR developers to integrate their solutions, while

also enabling third-party practitioners to extend its support to

other testing scenarios. We used TESRAC to test 11 different

projects featuring test suites with distinct levels of complexity,

ranging from a dozen to hundreds of test classes, as to show

its usefulness.

The main contributions of this work include:

• We present TESRAC, the first framework for assessing

and comparing the effectiveness of TSR tools. TESRAC

gathers multiple criteria, namely software quality metrics

(e.g., coverage metrics, mutation score), performance of the

execution process, and dimension of the reduced test suites,

combining them using a multi-criteria decision making ap-

proach. Software testers can adjust and fine-tune TESRAC, to

1Source code available at https://github.com/racoq/TESRAC

balance the importance of each criterion according to different

requirements before computing of the final reduction Score.

• We have implemented TESRAC to evaluate Test Suite

Reduction and Test Suite Prioritization tools for Java. Our

implementation follows a modular architecture, enabling it to

be extended to include new reduction or prioritization tools

and new software quality metrics as sub-criteria.

• We conducted and present the results for an experimental

evaluation where TESRAC is used for assessing and com-

paring three test suite reduction tools: Testler, EvoSuite and

Randoop, and one test case prioritization tool: Kanonizo, using

11 (open source) projects. Our results show that TESRAC

can cutoff the less relevant test cases, thus enabling any

prioritization tool to be transformed into a reduction tool.

This paper is organized as follows. Section II introduces

related work. Section III presents an overview of TESRAC.

Section IV details the experimental setup used in our evalu-

ation. Section V reports our experimental results. Section VI

discusses the key findings and limitations of our work. Finally,

Section VII concludes this paper and discusses future work.

II. RELATED WORK

There is a large selection of TSR based studies and tools

that were surveyed in previous studies [5], [6]. These tools

are available as commercial or free and open source licenses

[6] and are presented on the next paragraphs.

ATAC [11] is a tool that analyses the coverage achieved

by tests on C and C++ programs. This is achieved essentially

through three steps: i) the instrumentation of the source-code

to be tested, which is achieved via the ATAC compiler, to

gather data regarding the program execution; ii) the execution

of the tests, which effectively allow to gather relevant informa-

tion; and iii) the coverage analysis, which gathers information

about the tests, such as line and branch coverage, that will be

used as input to the tester. One of the features highlighted

by the authors is the reduction of regression tests set size by

eliminating redundant tests.

RUTE-J [12] is an effort to solve some of the most common

problems in randomized unit testing, such as the correct

definition of arguments, whether they are scalar or complex,

and specifying correct behavior of tests. To use RUTE-J,

the user must write a Test Fragment Collection, which is

essentially a Java class that extends a RUTE-J class. Once

the Test Fragment Collection set up, RUTE-J UnitDriver is

executed, which initializes a graphical user interface, where

the user can generate test cases for the executed test fragment

collection. When RUTE-J finds a failing test suite it halts

the generation, giving the user the opportunity to minimize

the failed test suite, discarding the unnecessary statements to

achieve the fail state.

Randoop [9] is a tool that generates JUnit test cases while

reducing failing test cases. To generate test cases, Randoop

employs a technique that gathers feedback from the execution

of tests as they are generated [9], so that it can generate better

and more reliable tests. Randoop receives as input a JUnit test

suite and tries to reduce every test that fails by analyzing each

175

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

statement and provide a simplification. The simplifications

made to a statement can be achieved by applying the following

operations: i) if a statement is represented by null, it is

removed; ii) replacing the right hand side expression with

0, false or null, according to the left hand side expression;

iii) replacing the right hand side expression with a calculated

value obtained from a passing assertion; and iv) removing the

left hand assignment of a statement.

Open-SourceRed [13] is a framework that simultaneously

implements TSR and TCP algorithms. It consists of two

tools: Proteja and Modificare. Proteja is written in Java and

collects coverage information by running the JUnit test suites

associated with some software, outputting coverage reports.

These are used as input to Modificare for running the reduction

and prioritization algorithms. Modificare is written in R and

reads the reports generated by Proteja to apply one of the six

implemented TSR and TCP algorithms: random, adaptive ran-

dom, greedy, hill climbing, simulated annealing, and genetic.

EvoSuite was developed by Fraser and Arcuri [7]. It im-

plements search-based and mutation techniques to generate

and reduce test suites as small as possible ensuring high

coverage according to some criterion. While generating the

tests, EvoSuite uses a search-based approach, considering a

population of candidate solutions and generating new solutions

by reproduction of the best individuals, according to a fitness

function. In the case of EvoSuite, the candidate solutions

are test suites, each of them with a set of test cases. The

reproduction of two candidates is done by exchanging some of

their test cases between each other. In addition, mutation in the

candidates is also employed, by adding, removing, or changing

individual statements or parameters in some test cases.

Testler [8] employs a fine-grained minimization technique

to achieve Test Suite Reduction. It analyzes the behavior of

the test cases at the statement level to infer a model that

represents the relationship between the test statements and test

states, which is the information about a test at the time of each

statement executed, such as the defined variables, their values

and the production method calls. Based on this model, Testler

can detect any fine-grained redundancy between test cases in

the same test suite, and reorganizes the suites so that it removes

these redundancies.

JTOP [14] is a tool developed as an Eclipse plugin that

helps the management of JUnit test suites by statically ana-

lyzing the software under tests and conducting test reduction,

prioritization, and selection.

TOBIAS [15] is a web application that applies combinato-

rial test suite generation, to an input file from the user, written

in a specification language to be interpreted by TOBIAS. This

file describes the methods the test suite should test, and the

inputs it should use to do it. TOBIAS generates these test

suites in a combinatorial way, leading to really large test suites.

To address this issue it allows to connect the generator of the

test suite to “selectors” that choose a subset of the test suite

based on various techniques or criterias. The subset of test

suites are selected based on a stochastic approach.

TEMSA [16] is a web-based application where the user

provides a XML file as input,that specifies the features and test

cases that should be used to test a product. It considers cost

measures, such as overall execution time, and effectiveness

measures, such as fault detection capability or test minimiza-

tion percentage, that can also be set by the user in the website.

Based on this input, it then generates a set of XML files

representing the minimized test suite.

Regarding Test Case Prioritization, excluding OpenSource-

Red, there is one open source implementation worth mention-

ing. Kanonizo [10] re-orders test cases such that the ones

likely to detect faults are executed first. It implements sev-

eral algorithms materializing several methodologies namely:

random search and genetic algorithm (search-based), random,

greedy, additional greedy, and schwa, which operate at the

test case level; marijan, huang, cho, and elbaum, which are

history-based, meaning that they resort to an history file with

information related to previous test executions.

The majority of existing tools and ongoing research in the

context of test suit reduction are focused on Randomized

Unit Testing (RUT) [6]. RUT reduction tools use approaches

that generate distinct test inputs as to help exposing internal

errors. The remaining classes of TSR are not considered for

our study. From the RUT tools presented above Randoop,

EvoSuite, Testler, and Kanonizo were integrated in our tool

implementation and considered for empirical evaluation. We

opted to select all tools that reduced JUnit-based test suites,

which is the most widely used testing environment for Java-

based applications. This requirement excluded most other

existing tools. We have not integrated JTOP since it was

developed as an Eclipse plugin and only provided in a binary

form. We tried to find the source code but it was unavailable.

We opted to include support to Kanonizo, where we manually

perform the test suite reduction discarding the less relevant

test cases.

III. THE TESRAC FRAMEWORK

This section presents TESRAC’s internal architecture, which

is composed of three main components (illustrated on the left

side of Figure 1). The first component is named Input Selection
and is used to select the project and the test suites for the

execution on TESRAC. The second component is named Re-
duction and Execution and is responsible for reducing the test

suites using the TSR and TCP tools, executing the test suites

using a code coverage and reporting tool, and performing

mutation testing over the projects and test suites. The third

component is named Processing and Output and it gathers

relevant metrics from the previous component, which are used

to characterize the reduction and the mutation testing and

are then fed into a Multi-Criteria Decision Making (MCDM)

technique to produce the final score. In this section, we detail

the internal operation of each of these components (illustrated

on the right side of Figure 1).

A. Input Selection Component

When the framework starts, it expects the user-specified

project as its input. Inside the Input Selection component, two

176

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

Reduced Test
Suite

Input
(Project)

Test Generator
(EvoSuite)

Testler
Test Suites

Reduced
Test Suites

Randoop

Reduced
Test Suites

Reduced
Test Suites

TeTT st Suites

OpenClover

Kanonizo

Reduced Test
Suite

Reduced
Test Suites

OpenClover
Reports Processor

Comparison
Reports

penClove
Reports

r Proocess

ompariso
Reports

Pro

MCDM
Approach
M
Ap

Output
(CSV file)h (C

r PIT

PIT
Reportssorso PIT
Reports

TeTeTT st Su

penCloverp

TeTT st
(E

TeTT stlerTeTT

andoopRa

anonizoGenerator
EvoSuite)

Ka

R
TeTT

R
TeTT

R
TeTT

R
TeTT st Suites

eTT

R
est Suites

Reduced
TeTT st Suites

eTT st Suites

Reduced
est Suites

R
TT
Reduced
TeTT st Suites

Reduced
TeT st Suites

PITPIT

Evosuite

Reduction
Module

Fig. 1: An overview of the TESRAC Framework.

possible workflows are available: (i) retrieve the test suites

included by the project, or ii) generate new test suites. The

latter workflow can be useful when the project lacks a test

suite or when the user wants to generate new test suites. In

this workflow, TESRAC uses the Test Generator module that

integrates with the popular test suite generation tool EvoSuite.

In either case, the execution flow continues to the Reduction
and Execution component.

B. Reduction and Execution Component

Inside the Reduction and Execution component lays the key

modules that support the operation of TESRAC. After the test

suite is collected in the previous component, TESRAC reduces

it in the Reduction Module. This module includes support

for a range of pre-integrated tools, namely: EvoSuite, Testler,

Randoop, and Kanonizo. Since TESRAC adopts a flexible

architecture, it is possible for anyone to extend it to support

other TSR and TCP tools by writing simple adapters to interact

with external tools.

While some of the mentioned tools have a clear application

to TSR (such as Testler or Randoop), EvoSuite and Kanonizo

had to be further modified and integrated as to be able to take

advantage of their reduction capabilities. Since EvoSuite’s pri-

mary goal is to generate test suites using genetic algorithms to

create different test case combinations, and test suite reduction

is only performed at a later stage, a wrapper class was written

to directly take advantage of EvoSuite’s reduction features and

to integrate them into TESRAC. As a limitation, EvoSuite can

only reduce self-generated test suites and cannot be applied

to existing external test suites. Kanonizo is a TCP tool that

was integrated into TESRAC by repurposing its prioritization

mechanism into a mechanism capable of performing TSR. To

do so, TESRAC enables a threshold (or cutoff value) to be

set (in a configuration file) that will be used to define the

percentage of less relevant test cases that should be removed

from the prioritized list of test cases. TESRAC supports

the usage of various of Kanonizo’s prioritization algorithms,

including random: the test suite is randomly ordered; random
search: determines the important test cases using a fitness

function; greedy: prioritizes test cases that cover the maximum

number of lines; and additional greedy: similar to greedy,

but excludes already covered lines. Furthermore, TESRAC

supports simultaneously creating multiple reduced test suites

for different cutoff values.

After the reduction task is performed, the full set of test

suites (i.e., the test suites before and after the reduction) are

supplied as input to a code coverage analysis tool. TESRAC

has built-in support for OpenClover [17], a mature project that

supports more than 20 built-in code metrics, which is used to

process and gather code coverage metrics from the full set of

test suites.

In the end, mutation testing is performed over the projects to

run the full set of test suites to assess the mutation coverage,

which measures the fault-detection capabilities of each test

suite. PIT Testing [18] was chosen as the mutation testing tool

to be integrated in TESRAC, since it is a popular and proven

solution for Java. We note again that since the architecture of

TESRAC is modular, both OpenClover and PIT can be easily

replaced by similar tools.

C. Processing and Output Component

Using the information obtained from OpenClover and PIT,

this component calls the Processor module, which generates

a comparison report for each project and tool combination.

Each of these reports (outputted as a CSV file) states, for

every source class, test class and reduced test class, all of the

code coverage metrics and mutation scores.

These reports are then fed to the Multi-criteria Decision
Making module, which applies an approach inspired by the

Analytic Hierarchy Process (AHP) technique [19]. This ap-

proach allows to weight multiple criteria for comparison and to

produce a score that can assist in the decision making process

of selecting a particular subject (e.g., a TSR/TCP tool).

To apply our approach a quality model was defined, identi-

fying the main criteria and sub-criteria used for the computing

the final score [19], which is depicted in Figure 2.

The MCDM quality model considers three criteria: Dimen-

sion, Time, and Coverage. In the context of the Dimension
criterion, we consider two sub-criteria: file size of each test

suite and the number of test cases. For the Time criterion,

the only sub-criterion considered is the execution time for

each test suite. For the Coverage criterion, the sub-criteria

are branch coverage, total coverage and mutation coverage.

The total coverage is calculated, based on the branches that

are evaluated to true or false (at least once), and based on

the statements covered and methods entered, as defined in

177

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: MCDM Quality model employed in TESRAC.

OpenClover documentation [20]. Despite our choice of sub-

criteria, which aimed to use metrics capable of representing

the success of TSR (such as branch and total coverage [5], [6],

both supported by OpenClover [17]), the approach is flexible

and can be tailored to include other criteria and sub-criteria.

When the execution of TESRAC reaches the MCDM

module, it loads the criteria from its configuration file and

computes the priority for each sub-criterion as defined in AHP,

according to the importance values attributed to each sub-

criterion. These importance values should be defined by the

user in the configuration file and, intuitively, should answer the

following question: “How much more important is criterion X

in relation to criterion Y?", according to the fundamental scale

of importance, proposed by Saaty [21].

Normally the next step would be to compute the pairwise

comparison matrix between the alternatives (the reduction

tools) and their priorities, which would then be used to rank

the tools. However, we decided to diverge from the AHP in this

step, as we wanted the scores of each tool to be independent

from one another. Instead, we use the sub-criteria priorities

and the values measured for the sub-criteria for each tool to

compute their respective scores. For each criterion, the values

are a combination of the measurement of the related metric

for the original test suites and the reduced one, in such a way

that, for:

• Cost sub-criteria (such as file size, number of test cases

and test suites execution time): we take voriginal and

vreduced and calculate (1 − vreduced

voriginal
) ∗ 100. In the case

that voriginal is 0, we define the whole value to be 0.

• Benefit sub-criteria (such as branch coverage, total cov-

erage and mutation coverage): we take voriginal and

vreduced and calculate (vreduced

voriginal
) ∗ 100. In the case that

voriginal is 0, we define the whole value to be 0.

Once all these values are collected, we normalize inside of

each (Project, Sub-criterion) pair, so that we can relate each

value obtained for the different tools, for the same project and

sub-criterion. We normalize using the formula (vi

vmax
) , where

vi is the value obtained for a given tool, in the (Project, Sub-

criterion) pair, and where vmax is the maximum value from the

different values measured for this project in this sub-criterion

by every tool.

The final step in getting the reduction score for a tool in

a given project is performing a weighted sum between the

sub-criterion’s priorities (computed previously in the MCDM

Approach module) and the normalized values measured for

each of the sub-criterion in the given project. This ensures

that the score for a given tool will always be a value between

0 and 1, with values closer to 1 being better. As such, we can

rank the tools by sorting their scores in a descending order.

The output of the MCDM module (produced as a CSV file)

provides the reduction scores that each tool achieved in each

of the tested projects, as well as the total score computed for

that tool. TESRAC creates n +m × k test suites for each of

the original test suites of a particular project where n is the

number of integrated tools (except for Kanonizo), m is the

number of Kanonizo algorithms used and k is the number of

cut off values defined.

Finally, we note that the user can configure TESRAC

to execute in two modes: full mode, in which the flow of

execution goes through all of the described components; and

analyze mode, in which only the Processing and Output

Component is executed. This mode is useful when there are

already comparative reports generated by previous TESRAC

executions and the user wants to evaluate the tools according

to other criteria or by modifying the importance associated

with sub-criteria, allowing for an easy re-evaluation.

IV. EXPERIMENTAL SETUP

TESRAC was used to conduct an extensive experimental

work where 11 different open source Java projects were

compared. In this section we detail our testing environment,

the test subjects, and the experiments.

A. Testing environment and used software

The experiment was executed across two different configu-

rations of machines: a laptop with an Intel Core i7 7700HQ

processor and 16Gb RAM executing Windows 10; and a

cluster of machines, all equipped with Intel Xeon E5-2609

v4 processors and 32Gib RAM each executing Debian 10.

TESRAC was implemented using Eclipse IDE v4.8.0, using

Java version 1.8.0_231 and integrates with the code coverage

analysis tool OpenClover (v4.3.1) and the mutation testing tool

PIT (v1.5.2). Our current implementation of TESRAC is fully

integrated with EvoSuite (v1.0.7), Testler (v0.0.1), Randoop

(v4.1.2), and Kanonizo (v0.0.1). In the case of EvoSuite, only

the reduction process after the generation of the test suites is

evaluated. It is also worth noting that, although Kanonizo is

a test case prioritization tool and does not perform test suite

reduction, TESRAC can perform cutoffs to the less relevant

test cases, thus converting a TCP tool into a TSR tool.

B. Test subjects

In our experiments, we consider 11 different open-source

Java projects. As the tools that TESRAC integrates reduce

JUnit tests, the chosen projects feature JUnit test suites and

use the Maven build system. We have selected projects that are

representative of different domains, and also exhibit different

characteristics, such as the size of the codebase and test suite.

Table I reports the number of classes (between 10 and 637)

178

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

and the number of test classes (between 2 and 350) for the

projects that we have used in our evaluation.

TABLE I: Java open-source projects employed in our experi-

mental work.

Project Version Dimension # Dependents
LOC # Classes # Test

Classes
commons-lang 3.7 78 000 151 172 121 866
commons-email 1.5 6 182 23 26 14 219
pmd-core 6.20 48 221 350 102 160
tudu-lists 3.0 4 497 49 20 0
lambdaj 2.4.1 8 325 95 61 3 813
jfreechart 1.6.0 221 637 637 350 6 213
java-library 2.1.0 36 298 437 157 9
crunch-core 0.15.0 37 954 297 185 6
crunch-kafka 0.15.0 2 449 14 16 6
tika-xmp 1.18 1 644 10 2 97
xml-sec 2.0.8 70 530 392 198 1 745

C. Experimental Methodology

The experiments reported here can be separated in two parts:

i) generation, reduction, and analysis of test suites, and ii)
computing of reduction scores.

For each of the tested projects, we have conducted two types

of experiments: one using already provided test suites in each

project - defined as Normal runs - and another using test

suites generated by EvoSuite for each project - defined as

EvoSuite runs.
Kanonizo was configured to use four prioritization algo-

rithms (whose descriptions were previously presented): Ran-
dom, Random Search, Greedy, and Additional Greedy. In

addition to the algorithms, five cut-off values were used to

determine the percentage of less relevant test cases to remove:

10%, 15%, 20%, 25% and 30%. This means that Kanonizo will

act as 20 different tools, with each variation of the experiment

being labeled as (algorithm, cutOffValue). Each variation of

Kanonizo that executed the Random algorithm was repeated

30 times to ensure the reliability of results. We note that other

configurations produce fully deterministic results and hence

were executed a single time.

Generation, reduction, and analysis of test suites: The

experiment begins with the reduction (and generation, for the

EvoSuite runs) of the test suites for each of the projects.

Each of the original and reduced test suites was then used

by OpenClover and PIT to retrieve a set of metrics - File size,

number of test cases, test suites’ execution time, total coverage,

branch coverage, and mutation coverage. These represent the

pre-defined metrics that will be used in the evaluation.

Calculating reduction scores: The values of the metrics

retrieved from the reduced suites are combined with the values

from the original suites, which are then used to compute

a tool’s reduction score for each project, using the MCDM

approach and according to the configured importance of each

metric. This allowed for different configurations of the metrics

(sub-criteria of the MCDM), allowing for the evaluation of the

integrated tools in different scenarios.

For each run (Normal and EvoSuite), the tools were eval-

uated in six different scenarios: one real-world scenario that

tried to replicate a real-world need for managing and reducing

a test suite, and five scenarios where we focus on one of the

performance metrics.

V. EVALUATION

The experimental evaluation aimed at answering three re-

search questions related to the viability and performance of the

evaluated reduction and prioritization tools and the effect that

the project being reduced can have on the performance. Thus

this section is organized into three subsections that answer

each one of these questions in turn.

A. RQ1: Considering the pre-defined metrics, what is, in
relative terms, the best TSR?

Figures 3a and 3b present the (final) reduction score

obtained by every tool and all evaluated combinations of

algorithms and cutoffs in a real-world scenario (where the

scores of MCDM are distributed in a balanced manner but with

a slight preference for higher coverage and lower execution

time).
The top figure refers to experiments in the normal test

scenario while the second refers to experiments in the EvoSuite

scenario. Due to the non-deterministic nature of Kanonizo’s

Random algorithm, 30 independent executions were con-

ducted, with error bars being presented in the figures reporting

the standard deviation.

(a) Normal Run.

(b) EvoSuite Run.

Fig. 3: Reduction scores per tool on the real world scenario.

Considering the results in the normal test scenario, the best

performing tools were Kanonizo with Random Search and a

179

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

25% cutoff, with a reduction score of 0.808, Kanonizo with

Additional Greedy and a 25% cutoff, with a score of 0.802
,

and Kanonizo with Greedy and a 25% cutoff, with a score of

0.783. Interestingly the ideal cutoff appears to be 25% in every

algorithm, because results drops slightly when considering

cutoff values above of below this. This suggests that after the

25% cutoff mark, additional test cases have little benefit to the

coverage, only resulting in increasing the test suite size and

execution time.

In the EvoSuite runs, EvoSuite was the best alternative,

with a score of 0.794, but followed closely by Kanonizo

with Random Search configured with cutoff of 30% and 25%
,

with a results of 0.791 and 0.784 respectively. In these runs,

the ideal cutoff for most Kanonizo algorithms appears to

have moved to 30%, which suggests that the test suite being

reduced will govern the ideal cutoff value. Interestingly, the

Additional Greedy algorithm saw best performance at a 20%
cutoff and worst performance at 25% cutoff. Randoop and

Testler remained the two least effective tools.

In both cases, the Random algorithm was the worst per-

former from all of Kanonizo’s algorithms and further suffers

from high deviation, given its non-deterministic nature.

Different configurations other than the real world scenario

were considered. These purposefully focused on a specific

criterion from the set of test suite dimension, coverage and

execution time, by increasing the MCDM importance values

for that criterion to a higher value and reducing the remaining

scores to a lower value. The precise weights assigned to

each scenario are shown in Table II. The idea behind having

multiple scenarios is to encompass various choices that can

be done by users of the framework and to represent specific

applications (e.g., software with strong dependability require-

ments may prefer to prioritize mutation coverage to maximize

software bug detection). Figures 4a and 4b present, for the

Normal and EvoSuite test scenarios respectively, a spider

chart where each axis refers to a specific scenario (real-world,

mutation coverage focused, file size focused, total coverage

focused, and execution time focused) and the reduction scores

obtained by each tool for that specific scenario are plotted.

The same cutoff value of 30% is plotted for all algorithms

of Kanonizo and the line depicting the Random algorithm

represents the average of all 30 runs.

These charts enable an easy verification of how the various

tools perform when the focus of the test scenario changes.

With regards to the Normal runs, Randoop showed the worst

performance in all the scenarios except the dimension focused

scenario, while Testler was the second worst performing

tool. Kanonizo and its various algorithms showed the best

performance independently of the scenario being considered.

Kanonizo using the Random algorithm performed poorly in the

scenario that focused on total coverage, even having a lower

score than Testler, however it showed similar performance to

the remaining alternatives when focusing on mutation cover-

age. The Greedy algorithm showed slightly worse performance

on the scenario that focused on execution time of the test suite

and in the real-world scenario.

(a) Normal runs.

(b) EvoSuite runs.

Fig. 4: Spider chart with reduction scores for various scenarios.

On the EvoSuite runs, EvoSuite appears as the best alter-

native in every scenario with good results in the scenarios

that focus on mutation coverage and dimension. This means

that EvoSuite is capable of reducing test suites to an high

degree (i.e., creating reduced test suites with a low size)

while maintaining very good mutation coverage performance.

Randoop and Testler remain the worst performing tools, while

the various Kanonizo configurations had a performance that is

acceptable across all scenarios, but with results below that

of EvoSuite in scenarios focused on total coverage, mutation

coverage, and dimension. Among the various algorithms of

Kanonizo, Random exhibits worse results in execution time,

real-world, and in the coverage scenarios. Random Search was

the best performing algorithm, closely followed by Additional

Greedy, whose performance degrades when focusing on exe-

cution time.

Up until this point the results reported in this paper represent

the average of the set of 11 evaluated projects. To perform

a more detailed study, Figures 5a and 5b present the scores

180

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Weights used for MCDM in each scenario.

Sub-criterion
Scenario File size # of test cases Branches covered Total coverage Mutation score Execution Time
Real-world 0.0095 0.0473 0.0245 0.2132 0.0569 0.6486
Dimension 0.5727 0.2455 0.0303 0.0303 0.0303 0.0909
Exec. Time. 0.0455 0.0455 0.0303 0.0303 0.0303 0.8182
Mutation Cov. 0.0455 0.0455 0.0744 0.0744 0.6694 0.0909
Total Cov. 0.0455 0.0455 0.0744 0.6694 0.0744 0.0909

obtained on the real-world scenario by all tools for each of the

11 projects, for the Normal and EvoSuite test scenarios. The

same cutoff of 30% was used for all algorithms of Kanonizo.

Considering the results for the normal test scenario (Fig. 5a)

it is possible to find one project where all tools had

very similar performance (commons-emails) and various

projects where most tools except one had similar perfor-

mance. This was the case of the commons-lang project,

where Testler achieved very low scores, and crunch-core,
crunch-kafka, and xmlsec where Randoop also achieves

low scores. To an extent the same observation can be made

regarding the various algorithms of Kanonizo. For example,

Greedy performed much worse than the remaining algorithms

in the tudu-lists project, but Random Search was the best

overall tool for the pmd-core project and Random was the

best in the lambdaj project.

When looking at the EvoSuite runs, the picture

changes drastically, and projects that once showed good

and equilibrated performance across all tools, such as

commons-email, now have some of the most variable

results. The EvoSuite tool generally performed very well

but also obtains lower scores in certain projects, such as

crunch-core, where it had the lowest score from all tools.

In summary, it seems that although some tools, such as

EvoSuite, Kanonizo Random Search and Kanonizo Additional

Greedy, tend to perform very well for the majority of projects,

the scores are still very much dependent on the project being

evaluated. Furthermore, the comparison between Normal runs

and EvoSuite runs, suggests that one important factor for the

performance of a tool is not the project itself, but the test suite

being reduced, as big discrepancies were noted for the same

project and tool across these two types of runs.

Figures 6a and 6b represent the same information but

facilitating the analysis of how each project affects a certain

tool’s performance.

The research question of whether there is a best TSR tool

(relative to others) can be answered positively, as in so far

that it was possible to obtain a limited set of tools (Evo-

Suite, Kanonizo Random Search #30 and Kanonizo Additional

Greedy #30) that consistently showed better performance for

the majority of projects, but with limitations. Despite the

affirmative answer, it should be noted that in order to find the

absolute best tool, the interested practitioner should execute
TESRAC using the specific project and test suite that will be
reduced. Only then it will be possible to identify the most

adequate tool.

B. RQ2: Can a TCP tool be adapted to effectively be an
alternative to a TSR tool?

The previously shown results, namely in Figures 3a, 3b, 4a

and 4b, demonstrate that a TCP tool (in this case, Kanonizo)

can have performance that is better than some TSR tools

(e.g., Testler and Randoop) and closely matches even the

tool that the experimental evaluation deemed as the best

(EvoSuite). Therefore, this research question can be answered

affirmatively. Yes, it is possible to adapt a TCP tool to be
an alternative to a TSR tool and it can even match the

performance of the top-performing TSR tools. In our opinion,

this is an interesting observation that might lead to additional

research in the future.

C. RQ3: The complexity of the projects influences the reduc-
tion score of any tool?

Figures 5 and 6 suggested that the performance of the

different tools is sensitive to the project or the test suit

being reduced. To further analyze this question, the Pearson

correlation coefficient between reduction scores for various

scenarios and three project metrics – lines of code (LoC),

number of classes, and number of test classes – are presented

in Figure 7, which refers only to the normal test scenario.

Darker colors mean higher correlation between a reduction

score and a metric. A high positive or negative Pearson

correlation coefficient means that a variable X (e.g., a project

property) is linearly correlated to another variable Y (e.g., the

reduction score in a scenario). A coefficient near 0 means that

there is no linear correlation.

If project properties had a strong impact on the reduction

score, then we would expect to see high correlation coeffi-

cients, however the heat-map shows only values lower than

0.21. This suggests that there is just a small linear correlation

between the number of test classes and the reduction scores

on the real world and execution time focused scenarios.

To answer this research question, no, the complexity of
the projects does not influence the reduction score. However,

the results suggest that tools can have varying performance

depending on project or test suite, and this observation war-

rants further research in the future, namely by taking into

consideration other properties of the projects such as the type

of software in the project.

VI. DISCUSSION AND LIMITATIONS

The presented results suggest one important conclusion: test

case prioritization can be a viable alternative to the TSR tools

available, considering Java unit testing. In fact, according to

181

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

(a) Normal runs. (b) EvoSuite runs.

Fig. 5: Reduction scores per project and tool on the real world scenario

(a) Normal runs. (b) EvoSuite runs.

Fig. 6: Reduction scores per tool and project on the real world scenario

Fig. 7: Heatmap with Pearson correlation between scores and

project properties.

our own field study, from all the TSR tools that have been

published in literature only a few are actively maintained.

One possible explanation is that research is more active in the

field of TCP and researchers seem to believe that this a more

promising area for significant contributions. The other possible

explanation is that there is room for new and improved

open-source tools that adopt innovative techniques that can

advance the state-of-the-art in TSR, such as what Kanonizo

and EvoSuite are doing for test case prioritization and test

suite generation, respectively. Our framework is by itself a

contribution in this area for creating a healthy competition

between existing and new TSR tools.

One unexpected result is that EvoSuite (when instrumented)

can be a viable TSR tool. This is surprising since its main

182

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

goal is not test suite reduction. Our findings are controversial,

since one can argue that EvoSuite generates the test suites that

it is then going to reduce, giving it an unfair advantage over

the remaining tools. However, we defend that, for the projects

used in our experimental work, TSR tools should have been

more effective than a tool that was instrumented to access its

internal test suite reduction mechanism. As it is clear from

Figure 4b, EvoSuite generates test suites that take negligibly

more time to execute, but have greater code coverage and

mutation coverage and have a smaller dimension. It would

be an interesting contribution to the community if EvoSuite

developers provided direct access to its TSR mechanism (e.g.

as a supported API), or as a standalone project that could

compete with other TSR tools.

The test case prioritization tool, Kanonizo, was evaluated

using four algorithms supported by it, using different cutoff

values. The results showed that the best performing algorithms

were Random Search, followed by Additional Greedy. The

usage of the Random algorithm is discouraged due to its non-

deterministic nature and associated probability for failing to

find acceptable reduced test suites. In terms of cutoff values,

the results suggest that they depend on the test suite (the ideal

cutoff value differed between Normal and EvoSuite runs), but

generally, cutoff values equal or above 20% should be used.

The relative performance between the evaluated tools tended

to remain quite unaffected by the project to be reduced (i.e., if

a tool shows good performance in a project, it is likely to per-

form well in almost all other projects). However, occasionally

a tool ranked a lot lower than usual in a specific combination

of project and test suite (e.g., Normal and EvoSuite runs). This

suggests that there can be properties of a test suite (or project)

that may impact significantly the performance of the tool. On

the other hand, an analysis of the correlation between a set

of project properties (LoC, number of classes, and number of

test classes) and the reduction scores concluded that there is

little correlation between these two groups.

A threat present in our work is the strong association

with the Java language and JUnit, which represent a subset

of all programming languages and unit testing frameworks.

However, this was a conscious decision that we took in order

to define a common platform for testing and promote a fair

comparison between the test subjects. Also, Java-based TSR

tools are, to the best of our knowledge, receiving an increasing

interest from the research community [5], [6]. It is worth

mentioning that we devised TESRAC’s architecture to be

generic enough to be applied in the development of similar

assessment tools for other programming languages.

We argue that the sub-criteria (i.e. metrics) used for defining

the MCDM quality model (see Figure 2), are adequate to

assess and compare the effectiveness of TSR. Nonetheless,

the quality model can be easily extended to include other

metrics such as requirements coverage, or Average Percentage

of Faults Detected (APFD), respectively useful for companies

with a requirement-based development process and for prac-

titioners or researchers in the field of fault localization.

The eleven projects that were studied in the evaluation may

not be representative of every existing project, however they

are popular open-source projects that maintain an adequate set

of test suites. In our choice of projects, we also tried to include

most of the projects that were tested in previous studies, such

as those that were originally used to evaluate Testler [8].

VII. CONCLUSION

This paper presented TESRAC, a framework for assessing

and comparing the effectiveness of test suite reduction tools.

Its goal is to foster innovation by encouraging competitiveness

between existing and new tools and to raise awareness of the

need for new approaches and tools for test suite reduction. We

used TESRAC to evaluate the test suite reduction performance

over 11 open-source projects of four tools: Randoop, Testler,

Evosuite and Kanonizo. We concluded that EvoSuite and

Kanonizo provide good temporal and size reduction without

sacrificing code and mutation coverage. We also concluded

that the performance of any tool, despite being generally

consistent, may vary depending on the project and test suite

being reduced. As future work we intend to port new test

suite reduction techniques from other tools to TESRAC. We

also intend to implement support for other code analysis tools,

besides OpenClover, and give the user the option to choose

which one to use. This could also make for an interesting

comparative study about the way the analysis of each one

of these tools influence the final score obtained for a TSR

tool. Finally, we will consider the implementation of other

multi-criteria decision making techniques and study additional

metrics for inclusion, as to give more choice to how users

compare the effectiveness of existing tools.

ACKNOWLEDGMENT

This work was partially supported by projects NOVA

LINCS (FC&T grant UIDB/04516/2020) and NG-STORAGE

(FC&T grant PTDC/CCI-INF/32038/2017) and within the

scope of project CISUC - UID/CEC/00326/2020, by the Euro-

pean Social Fund, through the Regional Operational Program

Centro 2020.

REFERENCES

[1] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 2, pp. 276–291, 2013.

[2] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in continuous
integration environments: A systematic mapping study,” Information and
Software Technology, vol. 121, p. 106268, 2020.

[3] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings,
S. Sinha, S. A. Spoon, and A. Gujarathi, “Regression test selection for
java software,” SIGPLAN Not., vol. 36, no. 11, p. 312–326, Oct. 2001.

[4] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold, “Priori-
tizing test cases for regression testing,” IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[5] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability,
vol. 22, no. 2, pp. 67–120, 2012.

[6] S. U. R. Khan, S. P. Lee, R. W. Ahmad, A. Akhunzada, and V. Chang,
“A survey on test suite reduction frameworks and tools,” International
Journal of Information Management, vol. 36, no. 6, Part A, pp. 963 –
975, 2016.

183

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

[7] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. NY, USA: ACM, 2011,
pp. 416–419.

[8] A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test minimiza-
tion,” in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. NY, USA: ACM, 2018, pp. 210–221.

[9] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” in Companion to the 22nd ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications Companion,
ser. OOPSLA ’07. NY, USA: ACM, 2007, p. 815–816.

[10] D. Paterson and J. Campos, “Kanonizo,” https://github.com/kanonizo/
kanonizo, 2020, accessed: 2020-08-01.

[11] J. R. Horgan and S. London, “A data flow coverage testing tool for
c,” in Proceedings of the Second Symposium on Assessment of Quality
Software Development Tools, May 1992, pp. 2–10.

[12] J. H. Andrews, S. Haldar, Y. Lei, and F. C. H. Li, “Tool support for
randomized unit testing,” ser. RT ’06. NY, USA: ACM, 2006, p. 36–45.

[13] J. M. Kauffman and G. M. Kapfhammer, “A framework to support
research in and encourage industrial adoption of regression testing
techniques,” in 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation, April 2012, pp. 907–908.

[14] L. Zhang, J. Zhou, D. Hao, L. Zhang, and H. Mei, “Jtop: Managing
junit test cases in absence of coverage information,” in Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’09. USA: IEEE, 2009, p. 677–679.

[15] F. Dadeau, Y. Ledru, and L. Du Bousquet, “Directed random reduction
of combinatorial test suites,” ser. RT ’07. NY, USA: ACM, 2007, p.
18–25.

[16] S. Wang, S. Ali, and A. Gotlieb, “Cost-effective test suite minimization
in product lines using search techniques,” Journal of Systems and
Software, vol. 103, pp. 370 – 391, 2015.

[17] OpenClover, “OpenClover,” https://openclover.org/, 2020, accessed:
2020-08-01.

[18] H. Coles, “PIT Mutation Testing,” https://pitest.org/, 2020, accessed:
2020-08-01.

[19] M. Martínez, D. D. Andrés, and J. Ruiz, “Gaining confidence on
dependability benchmarks’ conclusions through "back-to-back" testing
(practical experience report),” in 2014 Tenth European Dependable
Computing Conference, 2014, pp. 130–137.

[20] OpenClover, “OpenClover code metrics,” https://openclover.org/doc/
manual/4.2.0/general--about-openclover-code-metrics.html, 2020, ac-
cessed: 2022-02-01.

[21] T. L. Saaty, “Decision making with the analytic hierarchy process,”
International journal of services sciences, vol. 1, no. 1, pp. 83–98, 2008.

184

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on February 05,2023 at 14:32:34 UTC from IEEE Xplore. Restrictions apply.

