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Abstract. In this paper we present a study of the workload of the In-
terPlanetary File System (IPFS), a decentralized file system which is a
key enabler of Web3. Our study focuses on the access patterns observed
from one of the most popular IPFS gateways located in North America,
and analyzes these access patterns in light of one of the most common
assumptions made in regard to the access pattern of decentralized con-
tent sharing systems: that the access patterns are mostly geographically
localized. However, through our study, we show that the access patterns
are content-dependent rather than geographically localized. In our study,
we found that access patterns mostly target a small set of popular con-
tent, which is provided by nodes in the North American and European
regions, despite the location of the requester. Furthermore, we found that,
interestingly, this popular content is only provided by a few nodes in the
system, suggesting a significant imbalance both in content providers and
in the access patterns of the system to the content. This in turn suggests
that the system is significantly centralized on these few node providers.

Keywords: Web3 · Distributed Systems · Measurements

1 Introduction

The Internet nowadays is supported mostly by a few large cloud providers that
include Google, Amazon, Microsoft, and Cloudflare. These providers host a wide
variety of web services that operate at a large scale serving a huge number of users
scattered throughout the World. Nevertheless, this paradigm forces application
providers to fully rely and trust on the operators of these centralized cloud
infrastructure, which dictate the terms of service with little to no competition.
Moreover, in most application scenarios using cloud infrastructures the control of
user data is relinquished, in some way, to these operators, which is undesirable
? This work was partially supported by FCT/MCTES grant SFRH/BD/144023/2019
and by the European Union’s Horizon Europe Research and Innovation Programme
under Grant Agreement No 101093006. Artifacts available in https://doi.org/10.
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(and being target of legislation such as the European GDPR), specially if we
consider the susceptibility of attacks to cloud infrastructures [12, 18]. To address
this, and partially motivated by the increased popularity and use cases enabled
by blockchain technologies [27,36], the concept of Web3 [16] has emerged. Web3
aims at decentralizing web technologies to improve user security and privacy
as well as providing guaranteed ownership of user data, through the use of a
combination of existing and novel peer-to-peer protocols [20,32].

However, Web3 is still in its early stages and has yet to become competitive
with modern cloud infrastructures, in terms of flexibility, application develop-
ment, security/privacy, and performance. This is due to the current Web3 main
technology enablers: blockchain, that maintains and replicates the system state;
libp2p [30], that is used to develop decentralized applications (dApps) and
their support; and IPFS [3,34], that is used as an entry-point to most dApps,
that are still restricted to the domains of content creation and sharing [10,28],
decentralized financing [35], decentralized communication [4, 9], among a few
others. This is because, blockchain, although important for decentralization, also
limits the amount of interactions applications can have, as these are mostly made
through the replicated state machine materialized by blockchains, which have
limited throughput. Furthermore, IPFS still has a large space for performance
improvement, as recent studies show that searching for content on IPFS can take
up to 2, 5 hours [5].

IPFS relies on a distributed hash table (DHT) to make content available
to users in the network. The DHT organizes nodes and content according to a
uniform distribution of identifiers that are assigned both to nodes and content.
This however, leads the topology of the DHT to not match the physical network
topology, which can cause routing to be performed across large distances for
content that is published near the requesters. This is commonly known as the
topology mismatch problem [21–23]. To address this issue, there are a number of
works in the literature [1, 7, 13, 17, 26, 31] that try to optimize and scale DHT
designs by assuming that content access patterns presents a high level of locality,
meaning that content is mostly accessed by users located in the (geographical)
vicinity of users that published it.

In this paper we present an in-depth analysis of the workload on IPFS to
verify if IPFS can benefit from such approaches that optimize for locality of
content access. To this end, we have gathered two weeks worth of logs from one of
the most popular IPFS gateways located in North America. These logs contained
the (access) requests made from IPFS users across the World to large amounts of
content stored in IPFS. We analyzed these logs and performed the same (valid)
requests that were observed in the logs to fetch the information regarding the
providers of the content.

While one of the contributions of this paper is the presentation of the novel
methodology that we developed to be able to study the logs of a large-scale
peer-to-peer system regarding its workload, our study allows us to make two
additional contributions. First, to correlate the amount of content that is being
provided on IPFS by different peers (providers) considering content that was
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requested through one of the most popular public IPFS gateways. Second, and
through the use of the MaxMind [24] database that matches IP addresses to
geolocation information, to identify the relation between the location of the origin
of requests and location of providers of the requested content. With this data, we
analyzed the IPFS workload and found that most content is provided only by a
few providers that are mostly located on North America and Europe, and disprove
the locality assumption commonly made in many peer-to-peer systems [1, 13].

The remainder of the paper is structured as follows: Section 2 provides a brief
description of IPFS and how it operates. In Section 3 we detail our methodology
to gather and analyze data used in this study. Section 4 presents our results,
providing insights on the workload of the IPFS network. Section 5 discusses
related work, and finally, Section 6 concludes the paper with final remarks and
observations regarding the obtained results.

2 IPFS

IPFS is a large scale peer-to-peer distributed system that aims at connecting
computing devices offering a shared file system. To enable this, IPFS relies
on libp2p [30] to handle networking aspects. To provide a membership and
lookup service among peers in the network, libp2p relies on a distributed hash
table (DHT), implemented as a variant of the Kademlia protocol [25]. IPFS
leverages this DHT to distribute and search content and locate peers in the
system. Content in IPFS is immutable, with each individual piece of content
(e.g., file, data block, etc) being associated with an identifier (CID), that is a
collection of hashes referred as a multi-hash, that includes the hash of the content
and hashes of metadata describing the hashing mechanism. Similarly, each peer
in IPFS also has an identifier (peerId) that is a multi-hash of the peer’s public
key. Peers organize themselves in the DHT according to a SHA-256 hash of their
peerId and store content pointers according to the SHA-256 hash of the CID.
Furthermore, each peer has associated to it a list of multi-addresses, that describe
the Internet addresses of the peer (this can be ipv4, ipv6, and the transport
protocols supported by that peer and ports).

IPFS peers do not store the content itself but only a pointer to the peer
providing the content (the one that published the content). As such, for a peer
to publish content on IPFS, the peer effectively announces to the network that it
provides the content by storing in the IPFS DHT a provider record. A provider
record contains a mapping of a CID to peerIds, i.e., the content providers. As
per the Kademlia operation, this provider record will be stored in the k closest
peers to the hash of the CID on the DHT. In IPFS k has a value of 20. Note that
the same content can be provided by multiple peers.

To fetch content, IPFS uses a protocol named Bitswap [8] that performs
both discovery and data transfer. For Bitswap to discover content it begins to
perform a local one-hop flood request for the CID. This will send a message to
all neighboring peers asking if they have the contents of the CID locally. Note
that this process is highly optimistic as Bitswap leverages the fact that an IPFS
node is connected to hundreds of other nodes (which are the nodes managed by
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DHT protocol and cached nodes that were used in previous DHT searches). If
the answer is positive, Bitswap begins transferring the content with a process
akin to BitTorrent [11]. If the response is negative and the content cannot be
found in a neighboring peer, it resorts to the DHT to find the provider records
of the CID. Once Bitswap has obtained one provider record, it will start to try
to transfer the content from providers indicated in that record.

IPFS has two modes of operation: as a server or as a client node. Server
nodes are (usually) publicly reachable in the Internet and participate actively
in the DHT to enable routing among peers and serve content to the network.
Client nodes connect to the DHT, but do not maintain the DHT, meaning that
client nodes can only perform requests to the DHT and do not participate in
the routing process. Additionally, an IPFS peer acting as server can also act
as an HTTP gateway. In this case the IPFS node also runs a web server that
grants access to IPFS via a browser interface to users. In more detail, a gateway
node is able to transform an HTTP request into a valid IPFS request, that will
either trigger a Bitswap and/or DHT operation, allowing to serve the content
to clients that are not running an IPFS node, and instead access to content via
their browsers.

As it is common in many P2P systems, not all IPFS nodes are publicly
reachable. This is the case for nodes that are behind a NAT. In this case, an
IPFS node can request a publicly reachable IPFS node to relay traffic for itself.
Furthermore, IPFS hosts third-party pinning services that host content for users
on IPFS servers controlled by the pinning service provider for a fee.

3 Methodology

In this section we provide a detailed description of our methodology to study and
characterize the IPFS workload. In summary, we collected two weeks worth (from
March 7th to March 21st of 2022) of logs [6] from one of the most popular IPFS
gateway – ipfs.io – that is located in North America. These logs were produced
by a NGINX reverse proxy that logged every HTTP request made. Each entry
in the log contains information about an HTTP request made by a user to that
IPFS gateway.

To process these logs, we filtered all non-valid HTTP requests (e.g., POST
operations and out of format entries), and extracted the CID in each valid HTTP
request. From this filtered subset, we resorted to IPFS to obtain all the available
provider records for each CID. To obtain geolocation information from both the
requests and providers, we matched the IP addresses in the gateway logs and the
provider record respectively against the MaxMind GeoLite2 Free Geolocation
Database [24]. Note that, the dataset provided was anonymized by replacing the
IP address of requesters with an identifier that maps to the geographic location
of the requester.

Finally, we combined both datasets on the requested and provided CID to
produce a global view that shows where content is requested and where that
content was being served from. In the following, we describe this process in more
detail.
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3.1 Processing the requests

The first step in analyzing the IPFS workload is to extract the requested CIDs.
To do this, we parsed the gateway logs into a structured data format that can be
easily processed. The gateway logs are generated by an NGINX reverse proxy, that
serves as a frontend for an IPFS server node that acts as the IPFS gateway. Each
log entry contains information about the received HTTP requests by the IPFS
gateway. In particular, we are interested in the following information of the HTTP
requests: the IP address of the requester, to extract geolocation information; the
HTTP operation and the HTTP status, to filter unwanted HTTP requests for
our study (e.g., POST operations and GET operations whose answer was had a
400 HTTP status); and the HTTP target and the HTTP host, that effectively
contain the requested CID. In total the logs we collected contained 123, 959, 912
requests.

We begin by filtering logs that are out of format. This amounts to 0.001%
of all requests and include requests that have unparseable HTTP targets which
contained hexadecimal codes in that field. Next, we remove all requests that
are not GET HTTP requests, as only GET requests actually make requests
to IPFS (either through BitSwap or the DHT). This removed about 19% of all
requests contained in the logs, leaving almost 81% of log entries with only GET
operations.

However, not all GET operations are of interest to study the workload. Such
is the case for GET operations that did not succeed (i.e., where the reply had an
HTTP status code of 400) or that do not contain a CID in their request. We filter
GET operations that did not succeed due to these having a high probability that
the content is either invalid (i.e., it was never available on IPFS) or the content
was no longer available at the time of the request. As for the CIDs in requests,
these appear in the full url of the request that is obtained by concatenating
the HTTP host field with the HTTP target field. Note that the HTTP host in
this case can be ipfs.io (i.e., the gateway host), in which case the CID will
appear on the HTTP target; or can be in the form of <CID>.ipfs.dweb.link,
in which case the CID is in the HTTP host part. Note as well, these url contain
a file system path to the requested content, which means that the CID might
represent a folder containing multiple files. In the case a url contains multiple
CIDs, we only consider the first CID, as effectively the gateway will only search
for the first CID in the url, as the remaining accessed content can be found
below the first CID in the (remote) file system path.

With this step, we filter out 41% of all GET operations, where 17% of these
were GET operations that did not succeed and 24% were requests that did not
contain a CID. With this, 47% of the total requests remained as valid GET
operations, which were the ones consider in our study. Table 1 summarizes the
number of requests we processed in each step for our study described above.

3.2 Locating the content providers

The second step in studying and characterizing the IPFS workload is to gather
information on the providers of the requested content, as to understand where
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Table 1: Requests processed summary.
Number of entries Percentage

Total 123, 959, 912 100%
Out of Format 2, 165 0.001%
Not GETs 24, 298, 396 19.602%
All GETs 82, 439, 744 80.396%
Valid GETs 58, 869, 788 47.491%

Table 2: Providers processed summary.
Number of entries Percentage

Total CIDs 4, 009, 575 100%
CIDs w/out provider 2, 175, 608 54.26%
CIDs w/ provider 1, 833, 967 45.74%

Providers 55, 830 100%
Providers w/out address 32, 968 59%
Providers w/ address 22, 862 41%
Providers w/ address after find 26, 886 48%

and by how many peers is the content served. To achieve this, we developed
a simple libp2p application that connects to IPFS and requests all provider
records for a given CID. Our application leverages the fact that IPFS uses the
same networking software stack and DHT provided by libp2p (which by default
connects to the IPFS network), to execute FindProviders API calls to libp2p
DHT to gather information for all providers of CIDs.

Out of the 58, 869, 788 valid GET operations, a total of 4, 009, 575 different
CIDs were requested. We requested the providers of all these CIDs through our
libp2p application. We found we were unable to locate the providers of 54% of
all CIDs. This can be due to the fact that the content was no longer available
on the network. Note that this study was perform about 6 months after the
requests were recorded by the gateway. This enables us to focus our study on
non-ephemeral content on IPFS which we argue is more representative of the
workload of the system. From the CIDs with providers we discovered 55, 830
different providers however, 59% of these did not have any addressing information
associated to them. This means that the peers storing the provider record did
not receive any update on the provider (from any kind of traffic) for a window
of time longer than 30 minutes, as such, the peers storing the provider record
assumed the provider might have moved and changed its network address, thus
deleting the previously known provider multi-address. To fetch the multi-address
in these cases, we queried the DHT for the multi-address of the provider, and
managed to find the multi-address of 4, 024 more providers (an additional 7%
of providers regarding those obtained directly from provider records). Table 2
summarizes the numbers of processed CIDs and found providers.

3.3 Analyzing the data
The final step to study and characterize the IPFS workload is to join both request
and providers data to map from where in the World are requests being performed
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and where in the World is the content provided/available. This required us to
extract geo-locality data from the gathered data. To this end, we use the MaxMind
GeoLite2 Free Geolocation Database [24], that provides the geolocation of a vast
collection of public IP addresses. However, this database is not complete and may
have IP addresses whose geolocation is unknown. Fortunately, for the request
data all IP addresses had geolocation information. On the other hand, only 88%
of providers with addresses had geolocation information.

Note that a provider is identified by a peerId and has multiple multi-addresses.
To get the geolocation information of a provider we had to extract the (public)
IP address of multi-addresses. For multi-addresses that contained protocols ip4
and ip6 this procedure is straightforward. This amounts to 98% all observed
multi-address (excluding local address, such as 127.0.0.1 and ::1); 0.6% of
multi-addresses were DNS addresses, that we resolved with local DNS resolvers;
and the remainder 1.4% of multi-address were relay multi-addresses, and hence
the provider did not have a public reachable IP address, which we ignored in
this study. For providers that had multiple locations (probably due to the use of
VPN services), we considered the last observed location. These were just a few
cases that do not impact significantly our study.

We have inserted both datasets into a PostgreSQL database for ease of
analysis. This database has 2 tables, one containing the requests and another
containing the providers. The requests table stores a request identifier (reqId),
the timestamp the request was originally made to the gateway, the CID requested,
and the location information of the requester. The requests table has as key
the reqId, that is a hash of the request log entry, to avoid processing duplicate
request entries from the log. The providers table stores: the CID provided, the
peerId of the provider, and the location information of the provider. The provider
table has as key the CID and peerId. This uniquely identifies each provider entry,
since each CID can have multiple providers, and a provider can provide multiple
CIDs. Notice that the CID in the providers table is a foreign key of the CID in
the requests table.

By performing a join over the requests and providers table we can compute
a mapping from where requests are performed to where they are provided.
Before presenting the results in the next section, we follow by providing some
implementation details on the mechanisms we employed to process and find
content providers information.

3.4 Implementation details
The code and scripts that were used to process the data for this study can be found
in https://github.com/pedroAkos/IPFS-location-requested-content. The
processing of data required fine-tuning of the parallelization of queries to IPFS.
This was required because IPFS can take some time to retrieve the provider
records from the DHT; from our study the average latency was about 6 seconds,
with the maximum latency reaching 1.5 hours; we made parallel queries to IPFS
to fetch provider records. However, libp2p can be extremely taxing on the network,
as a libp2p node can maintain hundreds, or even thousands, of connections and
perform thousands of requests. To put this in perspective, a process executing
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100 queries in parallel to find providers would produce almost 10, 000 packets per
minute. The process to resolve all 4, 009, 575 distinct CIDs took approximately
40 hours.

4 Results

In this section we analyze the results from our study to understand if IPFS would
benefit from a DHT design that assumes requests to have geographic locality. By
doing so, our analysis aims to answer the following questions:

1. How many requests are made to IPFS on average per day?
2. How is the request frequency distributed over different CIDs in the system?
3. How are providers geo-distributed in the system?
4. How is provided content distributed across providers in the system?
5. How does the location of requested content correlate with the location of

providers for requested content?

To answer these question, we analyze the data first from the point of view
of requests by considering the requests data extracted from the gateway logs
(Section. 4.1). We then analyze the data from the point of view of providers using
the data we extracted directly from IPFS (Section 4.2). Finally, we combine
information from both requests and providers data to produce a correlation
between the location of requests’ origins and content providers (Section 4.3).

4.1 Requests
In this section we analyze the results from the perspective of content fetchers.
With this, we aim to answer the first two questions of our analysis. How many
requests are made to IPFS on average per day? and How is the request frequency
distributed over different CIDs in the system? We begin by answering the first
question.

Figure 1 represents the client requests processed by the gateway per hour.
Notice that Figure 1a captures all requests made during the period of two weeks
(x-axis), Figure 1b captures the same requests but characterized by continent,
and Figures 1c and 1d focuses on the request traffic for the two regions with
most traffic, North America (Fig. 1c and Asia (Fig. 1d), for only the first 3 days
of the analysis period, with the night hours shaded on timezones that align with
each region (GMT-7 and GMT+8 respectively).

Figure 1a shows that, on average, more than 150, 000 requests per hour are
made to the IPFS gateway, reaching a maximum of almost 275, 000 requests per
hour. Notice that on day 2022-03-14 the requests suddenly drop. We verified this,
and indeed the logs we have from that day abruptly stop after a few hours (just
before the 5 hour mark). Most likely, this was due to an issue with the gateway
that day that made it unreachable for about 9 hours, which after then resumed
processing requests regularly.

From Figure 1b we can see that most of the gateway traffic is split from North
America (NA) and Asia (AS) with more than an average of 75, 000 requests
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(c) Three days of NA trafic on GMT-7.

21:00
23:00

01:00
03:00

05:00
07:00

09:00
11:00

13:00
15:00

17:00
19:00

21:00
23:00

01:00
03:00

05:00
07:00

09:00
11:00

13:00
15:00

17:00
19:00

21:00
23:00

01:00
03:00

05:00
07:00

09:00
11:00

13:00
15:00

17:00
19:00

21:00
23:00

01:00
03:00

Time

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Re
qu

es
ts

 p
er

 h
ou

r

2022-03-7 to 2022-03-10

(d) Three days of AS traffic on GMT+8.

Fig. 1: Requests over time.

per hour with origin on each region. The third region with the most requests
per hour is Oceania (OC) with an average of around 2, 500 requests per hour.
This is followed by Europe (EU) with an average of around 85 requests per
hour, Africa (AF) with an average of around 57 requests per hour, and South
America (SA) with an average of only 3 requests per hour. From these results
we conclude that this IPFS gateway handles predominantly traffic from North
America and Asia with a high volume of requests. Note that ipfs.io has an
anycast DNS record [34], which means that there are multiple instance of the
gateway located in the world (most likely there is an instance in Europe that
handles the European traffic). Nevertheless, we argue that we have sufficient data
to analyze if there is geographic locality in requested content.

To understand if this high volume of traffic has a day/night pattern, on
Figures 1c and 1d we plot the requests per day of the first 3 days of our analysis,
and shaded the areas of the plot that represent the night cycle (between 21h
and 7h). In Figure 1c we plot the North American traffic and shaded the night
hours on the gateway’s timezone (GMT-7), and in Figure 1d we plot the Asian
traffic and shaded the night hours on the Asian timezone (GMT+8). From these
results, there appears to be no obvious day/night pattern for the North American
and Asian traffics. However, there is a slight tendency towards having more
traffic during the night, although marginal. From these results we conclude that
the IPFS gateway has a steady high volume of traffic that is not driven by
geographical region nor by day/night cycles.

Figures 2 and 3 represent the frequency of requests performed for a CID
(i.e., how many times was a CID requested from the gateway by a user). These
results serve to answer question #2: How is the request frequency distributed over
different CIDs in the system?

Figure 2a shows an Empirical CDF (ECDF) for all requested CIDs. Notice
that the x-axis (representing the frequency of requests) is in logarithmic scale.
The y-axis captures the proportion of requested CIDs with at most that amount
of accesses. We notice that almost half of all CIDs are only requested once. After
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Fig. 2: All requested CIDs frequency.
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Fig. 3: Per continent requested CIDs frequency.

that, the frequency increases with decreasing increments on the proportion of
CIDs, where about 90% of all CIDs are requested at most 10 times and about
99% of all CIDs are requested at most 100 times. Figure 2b complements the
ECDF showing the distributions of frequency of requests (shown on the y-axis)
over the number of CIDs (shown on the x-axis). Each point in this distribution
represents how many CIDs where requested how many times. Note that both axis
of this figure are in logarithmic scale. From this figure we can see the tendency
on the frequency of requests over the number of CIDs, which resembles a typical
Zipf distribution. Table 3 summarizes the frequency of the top 10 requested
CIDs. We can further add, that most of these top 10 most requested CIDs were
Non-Fungible Tokens (NFT) related data, suggesting that this is a primary use
case for IPFS.

Figure 3 shows the same information but characterized by the following
regions: Africa (AF), Asia (AS), Europe (EU), North America (NA), Oceania
(OC), and South America (SA). Figure 3a shows an ECDF for the frequency
of requested CIDs (on the x-axis in logarithmic scale) over the proportion of
requests (on the y-axis), discriminated by region. We notice that almost 60% of
requests originating from Asia, request at most the same CID thrice, whereas
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Table 3: Top 10 summary of data in descending order. The first column represents
the amount of requests to each CIDs. The second column represents the amount
of replicas of each CIDs. The third column represents the amount of different
CIDs provided by each provider node. Each column is independent, encoding
different CIDs and providers.

Requested CIDs Replicated CIDs CIDs per Provider

482, 620 12, 610 869, 734
290, 485 5, 274 213, 837
254, 132 4, 663 202, 947
213, 019 2, 047 200, 373
209, 913 1, 876 176, 180
203, 510 1, 822 174, 803
199, 628 1, 404 173, 315
198, 500 1, 372 144, 422
193, 432 1, 283 108, 023
138, 084 1, 272 107, 885

60% of requests originating from North America request the same CID only once.
This shows that content requested from Asia has a higher popularity (i.e., the
same CIDs are requested more often) than in the remainder of regions. Figure 3b
complements the ECDF with the distributions of frequency of requests (shown
on the y-axis in logarithmic scale) over the number of CIDs (shown on the x-axis
in logarithmic). However, this shows that all regions seem to present a similar
Zipf distribution albeit, with different proportions, that is proportional to the
request rate originating from that region.

4.2 Providers

In this section we analyze the results from the perspective of providers. With
this, we aim to answer questions #3 and #4 of our analysis. How are providers
geo-distributed in the system? and How is provided content distributed across
providers in the system?

The first question is answered by the results presented in Table 4 which shows
the number of providers per continent. Notice that North America (NA) has
almost as many providers as Europe (EU) and Asia (AS) together. This shows,
that North America composes the largest portion of the content providers on the
IPFS system (which is corroborated by previous studies [2, 14]). Furthermore,
notice the last two columns in the table, that represent providers that only had a
relay address (labeled as Rl), meaning they were behind a NAT without a public
address; and providers whose location information was unknown (labeled as Un),
meaning there was no entry on the MaxMind database for those providers public
IP address. As the location of Rl nodes is also unknown, from this point on all
Rl nodes are considered as belonging to the Un category.

To answer question #4: How is provided content distributed across providers
in the system? we analyze both the amount of content replication in the system
(Figure 4) and the amount of (different) content provided by each individual
provider node in the system (Figure 5).
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Table 4: Providers geo-distribution.
AF AS EU NA OC SA AN Rl Un

Providers 40 4959 5789 10983 431 104 1 2473 689
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Fig. 4: CID replicas.

Figure 4 reports on the amount of replicated content over different providers.
Figure 4a shows an ECDF that captures the amount of replicas (on the x-axis
in logarithmic scale) that were found for the proportion of CIDs in that were
requested through the gateway (on the y-axis). We note that almost 70% of
all CIDs are replicated at most twice (i.e., provided by at most two different
providers in IPFS). Only a very small proportion of CIDs are replicated by a
large number of providers. Table 3 summarizes the amount of replicas of the top
10 replicated CIDs, where, after looking into these CIDs, we found that most of
them are IPFS manual pages. We verified if theses highly replicated CIDs were
also the most requested CIDs and found that this was not the case. In fact, the
top 10 requested CIDs are not highly replicated, having only a few providers
(only 3 of these CIDs have more than 10 providers). Figure 4b breaks down the
CID replicas by region. Here we notice that Africa has the most replicas of CIDs
although, this does not represent a large number as there are only a few providers
in that region. Although it is not visible in the plot, there is a small percentage of
CIDs that is highly replicated in North America. This is not surprising, as North
America has the largest number of content providers. Nevertheless, these results
suggest that there is a very limited high availability of requested content through
replication. This can be mostly explained by the way content is replicated, where
there needs to be an explicit (re)provide action by the user after fetching a copy
of the content from other provider(s).

Figure 5 shows the amount of different (requested) CIDs each provider provides.
Figure 5a presents an ECDF of the proportion of providers (on the y-axis) that
provide different amounts of CIDs (on the x-axis in logarithmic scale), here we
can see that 60% of providers only provide a single CID. We also note that less
than 10% of providers provide at least 10 CIDs, with a very small proportion
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Fig. 5: CIDs per provider.

of providers providing at least 1, 000 CIDs. The providers that provide more
CIDs amount to the largest part of provided CIDs, meaning that most CIDs
are provided by the same small set of providers. This suggests that pinning
services are the main providers of content in IPFS. Table 3 summarizes the top 10
providers with the most CIDs. Some of these providers had DNS multi-address,
which we verified pointed to DNS records suggesting these providers belonged
to nft.storage, which is a popular storage service for NFT content in IPFS.
Figure 5b analyzes the proportion of providers (on the y-axis) that provide
different amounts of CIDs (on the x-axis in logarithmic scale) categorized by
continent, which shows that the large providers are mostly located in North
America (NA), Europe (EU), and Oceania (OC). The fact that the biggest portion
of CIDs is provided only by a small set of providers suggests that although IPFS
is a decentralized content network system, the content stored in IPFS presents a
high degree of centralization in this small set of providers.

4.3 Requested content vs. provided content
Finally, in this section we combine gathered data from the requests and the
providers to obtain a global view of the workload, and to answer the last question:
How does the location of requested content correlate with the location of providers
for requested content?

To this end, we matched the request’s origin location to the providers’ location,
generating a heatmap (presented in Figure 6) that matches the location from
where each request was made to the location of provider(s) that had the requested
content. In Figure 6 the rows represent the location of the origin of (all) requests
while the columns present the location of providers, including a column (and
row) labelled as Unknown that encodes the percentage of requests to content
whose provider was not found or did not have (valid) geolocation information.
Note that a single request can be served by multiple locations, as per the CID
replication factor we discussed previously. We normalized the requests per region
to eliminate the disparity in quantity of requests, showing on the heatmap the
percentage of all requests made from one region to any other region (including
itself).
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Fig. 6: Request locality of all requested content through the gateway.

By analyzing the heatmap, we notice that the vast majority of requests from
all regions are either provided by providers in North America or in Europe. This
in fact suggest that there is very little geographic locality access pattern in
IPFS, as the heat is concentrated in North America and Europe, rather than on
the diagonal of the heatmap. However, from our previous observations, this is
also to be expected as the vast majority of content is located in these regions.
Furthermore, from this heatmap we can conclude that the North American
region contains the most popular CIDs, which from the previous observation that
requests follow a Zipf distribution, we may also conclude that the Zipf is not
independent per region. Finally, one last conclusion we can draw from our results is
that the IPFS access patterns seems to be driven more by the content’s popularity
than by the local interests of users, and hence the locality assumption made by
many P2P solutions is not applicable in this context. Indirectly, these findings
also indicate that current dApps that really on IPFS for content distribution
have a global expression, whose service providers are mostly located in North
America and Europe.

5 Related Work
Measuring and understanding the behavior of large scale and decentralized sys-
tems has always been an important endeavour, with a vast amount of studies
being made for peer-to-peer systems in the early 2000’s. The main challenge in
understanding how these systems operate in the wild derive from their decen-
tralized nature, which makes it hard to have vantage points to collect enough
information about events happening in the system. In particular, we highlight
two studies over peer-to-peer systems, one that also analyzes the traffic of large
scale systems, and a second that characterizes the workload of BitTorrent. The
first [33] analyzes the peer-to-peer traffic across large networks such as FastTrack,
Gnutella, and DirectConnect, from the point of view of a single ISP. Their findings
are similar to ours in the sense that they also observe most of the traffic being
generated by a very small amount of hosts. The second study [29] analyzes the
popular BitTorrent peer-to-peer file-sharing system. In this study, the authors
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perform active measurements in the systems to obtain data related to upload
and download speeds. On the other hand, our study focuses on complementary
aspects, such as the distribution and popularity of content published and accessed
through IPFS and the access patterns to that content.

More recent studies on peer-to-peer systems include blockchain systems such
as Bitcoin and Ethereum. Here we highlight two studies [15,19], that focus on
the transactions made within Bitcoin and Ethereum blockchains. These studies
characterize the performance of blockchain systems but fail to provide insights
over system network properties, such as the number of peers per region or
workload distribution over peers. Our study complements these by focusing on
IPFS, an increasingly relevant building block in the Web3 ecosystem.

IPFS has been the subject of several recent studies [2, 14] that are comple-
mentary to our own study, where the authors analyze peer distribution over
geographical regions and Bitswap traffic inside IPFS. Furthermore, IPFS was
extensively studied in [34], where the authors analyze the performance of the
system in general. Our own study complements the previous findings through an
analysis on the geographical relationship between IPFS web clients and content
providers that previous studies did not accomplish, with the aim to characterize
client access patterns to guide future research on IPFS and decentralized Web3
systems in general.

6 Conclusion

In this paper we presented a study over the traffic processed by one of the
most popular public IPFS gateways to identify characteristics of the workload
of a popular decentralized system and understand if IPFS would benefit from
DHT designs that optimize a content sharing network assuming that there exists
geographic locality on access patterns. In our study, we observed that the IPFS
gateway mainly processes requests incoming from North America and Asia that
target mostly the same content, independently of the location of the requester.
To understand where was the content provided, we queried the network for
the content provider records and discovered surprisingly that the most popular
content fetched through the public IPFS gateway is provided by only a few
nodes in the network. Our results suggest that IPFS is an imbalanced system
centered on these few provider nodes, which would not benefit from a DHT design
that access patterns follow geographic locality, as the access patterns seem to
be driven by content popularity rather than geographic interest. On the other
hand, this also points to studying novel load balancing schemes on IPFS that
encourage IPFS (server) users to replicate popular content. As future work, we
plan to extend our study to other public IPFS gateways as well as other Web3
networks, such as Ethereum Swarm and StorJ, to understand if our findings
are generalizable to other decentralized Web3 systems. Furthermore, we plan to
complement this study with a workload generator that produces client requests
based on the observations of our study, to enable the research and practitioners
community to evaluate Web3 (prototype) systems under realistic workloads.
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