
Technical Report RT/33/2009

A-OSGi: A framework to support the
construction of autonomic OSGi-based

applications

João Ferreira
INESC-ID/IST

joao.elias.ferreira@ist.utl.pt

João Leitão
INESC-ID/IST

jleitao@gsd.inesc-id.pt

Luis Rodrigues
INESC-ID/IST
ler@ist.utl.pt

May 2009

Abstract

The OSGi specification is becoming widely adopted to build complex applications. It offers adequate support
to build modular applications, where modules can be added and removed at runtime without stopping the
entire application. This paper proposes A-OSGi, a framework that leverages on the native features of the
OSGi platform to support the construction of autonomic OSGi-based applications. A-OSGi offers a number of
complementary mechanisms for that purpose, such as: the ability to extract indicators for the performance of
deployed bundles, mechanisms that allow to have a fine grain control of how services bind to each other and to
gather this information in runtime, and support to a policy language that allows to define autonomic behaviour
of the OSGi application.
Keywords: Autonomic Computing, OSGi, Service Oriented Computing

.

A-OSGi: A framework to support the construction of autonomic
OSGi-based applications

João Ferreira
INESC-ID/IST

joao.elias.ferreira@ist.utl.pt

João Leitão
INESC-ID/IST

jleitao@gsd.inesc-id.pt

Luis Rodrigues
INESC-ID/IST
ler@ist.utl.pt

Abstract

The OSGi specification is becoming widely adopted to build complex applications. It offers adequate
support to build modular applications, where modules can be added and removed at runtime without
stopping the entire application. This paper proposes A-OSGi, a framework that leverages on the native
features of the OSGi platform to support the construction of autonomic OSGi-based applications. A-
OSGi offers a number of complementary mechanisms for that purpose, such as: the ability to extract
indicators for the performance of deployed bundles, mechanisms that allow to have a fine grain control
of how services bind to each other and to gather this information in runtime, and support to a policy
language that allows to define autonomic behaviour of the OSGi application.

1 Introduction

The OSGi specification [22] (initials for the extinct Open Services Gateway initiative) defines a stan-
dardized component oriented platform for building Service Oriented JavaTM applications. OSGi provides
the primitives and support that allows to build applications from small, reusable and collaborative com-
ponents. The OSGi platform also provides the support for dynamically changing such compositions,
without requiring restarts. To minimize the level of coupling, the OSGi provides a service-oriented
architecture that enables components to dynamically discover each other for collaboration.

OSGi was first developed with a number of concrete application areas in mind, including ambient
intelligence, automotive electronics, and mobile computing. However, its advantages made the technology
appealing also to build flexible Desktop Applications [6], Enterprise Applications [21, 14] and also Web
Applications [16, 23]. A key issue associated with the deployment and management of complex web
applications is to ensure the performance of the application in face of changing workloads. The difficulties
in forecasting accurately the demand and in estimating the interference among the deployed applications,
makes the configuration of web applications a significant challenge [1, 25]. The concurrent execution of
multiple OSGi bundles, possibly developed by different teams, that invoke each other in patterns which,
due to the dynamics of the system evolution, are difficult to predict at design time, makes this challenge
even more daunting.

Autonomic computing has emerged as a viable approach to manage complex systems such as the one
described above [8]. The idea is that a system must own autonomic management components, able to
offer self-configuration, self-optimization, self-healing and self-protection features to itself. The ability to
adapt its own behavior in response to changes in the execution environment is the fundamental ability of

1

an autonomic system. The OSGi platform, by allowing components to be removed, added, and replaced at
runtime without stopping the system, is particularly appealing for building autonomic web applications.

This paper proposes, describes and evaluates A-OSGi, a framework to support the construction of
autonomic OSGi-based applications. A-OSGi offers a number of complementary extensions to the basic
OSGi framework that improve its autonomic capabilities. Namely, A-OSGi includes the following fea-
tures: the ability to extract indicators for the performance of deployed bundles, mechanisms that allow
to have a fine grain control of how services bind to each other and to gather this information at runtime,
and support for the interpretation of a policy language, that allows to define the autonomic behavior of
OSGi applications deployed over the A-OSGi framework.

The rest of the paper is organized as follows. Section 2 overviews related work. The design and
implementation of A-OSGi is described in Section 3 and Section 4, respectively. The resulting system is
illustrated and evaluated in Section 5. Section 6 concludes the paper, providing some pointers for future
work.

2 Related Work

In this section we provide a brief description of the OSGi platform architecture. Then we describe
the MAPE-K autonomic control loop in the context of the OSGi architecture and, finally, we present
some works that have explored strategies to enrich the OSGi platform with mechanisms to assist in the
creation of autonomic applications, for instance, by proposing adequate monitoring mechanisms.

2.1 OSGi Platform

Figure 1. OSGi Architecture

The OSGi platform [22] provides support for deploying extensible Java-based applications composed
by reusable modules, usually named bundles. The basic architecture of the platform is depicted in
Figure 1. The platform allows to install, update, and remove bundles without stopping or restarting
the system. Moreover, bundles are loosely coupled, and interact through service interfaces. In more
detail, a bundle can register with the OSGi platform a number of services that it makes available to
other bundles; the platform offers a service discovery mechanism that allows a bundle to dynamically
find, at runtime, services that it requires to operate. The platform functionality is divided into the
following four layers: i) The Security Layer extends the basic Java language security layer with a secure
package format for bundles; ii) The Module Layer defines the modularization model employed by the
platform, including the Java packages visibility and sharing rules among bundles, iii) The Life Cycle
Layer provides the runtime support for bundles, including the mechanisms to install, update, remove,
start, and stop individual bundles. It operates on top of the Module Layer; iv) The Service Layer owns
the responsibility of providing the mechanisms to support the decoupling between service specification

2

(interface) and implementation. Moreover, it allows individual bundles to register services provided by
them as well as locate and bind bundles that provide other required services. The use of the service layer
for bundle communication is recommended in the OSGi best practices.

The OSGi platform was initially oriented to embedded systems and network devices, however with its
inclusion in the Eclipse IDE, OSGi is now widely used for both desktop and server applications [6, 21],
namely for developing web applications [16, 23]. OSGi based applications have increased in complexity
over the years, however the OSGi platform still lacks support for developing autonomic applications.
Namely, the platform does not provide mechanisms to monitor the operation of individual bundles and
to take advantage on distinct service implementations that potentially present different trade-offs between
quality of service provided to the clients and resource consumption required to provide that service.

2.2 MAPE-K Control Loop

Many autonomic systems are modeled through a MAPE-K autonomic management control loop [9].
This loop consists on the following operations: monitoring (M), analysis (A), planning (P), and execution
(E). The K stands for a shared knowledge base that supports these operations. We now provide a brief
description of each MAPE-K component and discuss how they can be implemented in the context of the
OSGi platform.

Monitoring The monitoring component is responsible for managing the different sensors that provide
information regarding the performance of the system. In the OSGi context, sensors can capture the
current consumption of critical node resources (such CPU and memory) but also other performance
metrics (such as the number of processed requests per second and the request process latency). The
monitoring granularity is the bundle. Sensors can also raise notifications when changes to the system
configuration happen. Such sensors can be implemented using the notifications provided by the OSGi
platform during the life cycle of bundles and services, and when clients bind and unbind to services.

Analysis The analysis component is responsible for processing the information captured by the moni-
toring component and to generate high level events. For instance, it may combine the values of cpu and
memory utilization to signal an overload condition in the OSGi platform.

Planning The planning component is responsible for selecting the actions that need to be applied in
order to correct some deviation from the desired operational envelope. The planning component relies
on a high level policy that describes an adaptation plan for the system. These policies may be described
using Event Condition Action (ECA) rules that are defined by a high level language. A ECA rule
describes for a specific event and a given condition what action should be executed. In the context of
OSGi, the actions may affect the deployed bundles and the bindings among these bundles.

Execution The execution component applies the actions selected by the planning component to the
target components. In OSGi, we consider three main actions types, as follows: i) specify rules for service
bindings, in such a way that a specific bundle is prohibited, or obliged, to use some specific service
implementation; ii) change service properties, for instance change a parameter associated with a service
implementation; and iii) control the life cycle of a bundle, by either starting or stopping bundles.

Knowledge Base The knowledge base component maintains information to support the remaining
components. In the context of OSGi, it maintains information about managed elements, specificaly

3

which services a bundle is using, which services a bundle provides, and other information about the
dependencies among services.

2.3 iPOJO

One of the useful properties of OSGi, that can assist in developing autonomic applications, is the fact
that the binding among different services can be established in runtime, to reflect the system dynamics.
For instance, bindings may change when services become available or unavailable, as a result of bundle
activation or deactivation. Still, the basic OSGi framework offers poor support to manage this dynamism.
iPOJO [3] is a tool that is mainly aimed at simplifying the management of service dynamism and of non-
functional service properties. iPOJO creates a clear separation between the business logic and the service
oriented mechanisms, allowing business logic objects to be implemented as simple POJOs: Plain Old
Java Objects. This is achieved using a component container that manages all dynamism related to the
business logic POJOs. In [3], the authors specifically apply the iPOJO solution over an OSGi platform.
Although this approach can ease the management of services binding in runtime, unlike A-OSGi, it lacks
the remaining components to build a MAPE-K control loop.

2.4 OSGI Monitoring

Several previous works have addressed the topic of monitoring OSGi applications [13, 5]. Most of
these solutions have focused on providing an adequate per-bundle CPU consumption isolation. The work
presented in [13] employs a thread-based approach to monitor each OSGi bundle, by creating threads
that are internally associated with an individual bundle. Another approach can be found in [5], where
the authors employ Isolates (or other execution environment objects) to achieve the required isolation
(unfortunately, this solution only works in specific, modified, JVMs). Other tools could also be applied
to monitor the resources, such as bytecode instrumentation for CPU accounting [7].

3 The A-OSGi Framework

Figure 2. A-OSGi Architecture

The A-OSGi framework offers a number of extensions to the OSGi platform to support the development
of autonomic applications. In this section, we provide an overall overview of the A-OSGi architecture
followed by a detailed description of each of its components.

The A-OSGi architecture follows the general MAPE-K model (introduced previously in the Sec-
tion 2.2). More specifically, we have augmented the OSGi platform with functionalities that support
monitoring, analysis, planning, execution, and knowledge aspects of that model. As depicted in Fig. 2

4

these functionalities are provided by three main components, namely: A-OSGi Monitoring and Analy-
sis component (MAC); A-OSGi Execution component (EC); A-OSGi Knowledge component (KC); and
A-OSGi Policy Interpreter and Enforcer (PIE).

A-OSGi Monitoring and Analysis Component (MAC). The MAC component is responsible for
retrieving information from sensors; it interacts with the OSGi service and module layers, as well as with
the JVM. The MAC component monitors resource consumption, performance metrics, and changes to
both bundle and service availability, as well as the binding of services by individual bundles.

Whenever the MAC detects a relevant change in the system, it generates an event to alert any interested
component. Such events are routed to all components that have previously subscribed them. In our
current architecture, only the PIE component subscribes all provided events. However, by exposing a
publish-subscribe interface, we facilitate the extension of our architecture with additional functionalities.

The MAC component also runs any required analysis objects. Analysis objects subscribe the (low-
level) events required to derive higher level notifications. In the current prototype, there is no explicit
support to specify analysis objects using some form of domain specific language constructs: analysis
components have to be programmed directly in Java. This pragmatic design choice allowed us to build a
running prototype of the A-OSGi architecture that has been used to assess the merits of our approach.
As future work we will enrich the analysis component, for instance, integrating previous work by others,
such as the Event Distiller described in [11].

A-OSGi Execution Component (EC). The EC component is responsible for executing actions over
bundles, individual services, and the OSGi kernel. Its interface exports the primitives that allow to start
and stop bundles, change service binding rules in run-time (by adding or removing binding obligations
and prohibitions), and also change properties of individual services (for instance by changing parameters
associated with the operation of such services). In order to perform these actions, EC interacts with both
the service and the life cycles layers of the OSGi architecture. In the current version of the architecture,
only the PIE component uses the services of the EC component.

A-OSGi Knowledge Component (KC). The KC component provides a set of mechanisms that allow
other components to consult information regarding the state of the A-OSGi execution evironment. In
more detail, this component maintains, and exports, information concerning the set of installed bundles
and registered services, and also on existing dependencies among bundles and services. To maintain such
information available, the KC component interacts directly with the module and service layers of the
OSGi architecture. In our current architecture the information maintained by the KC is accessed by the
PIE component, which uses it to compute adaptation plans.

A-OSGi Policy Interpreter and Enforcer (PIE). The PIE component interprets the system policy,
which is described by a set of ECA rules. The activity of PIE is driven by events received from the MAC
component, that notify the need to perform adaptations. To select the best course of action, PIE uses
the the information about the system provided by the KC component. As a result of its activation, PIE
may request to the EC component the execution of one or more actions.

4 Implementation of A-OSGi

In this section we describe in some detail the implementation of A-OSGi architecture. The components
of the A-OSGi architecture are implemented, themselves, as OSGI bundles. Naturally, these bundles need
to be deployed to support the autonomic behavior of the OSGi system. However, some of the functionality
required to implement these bundles requires small changes to the standard OSGi framework. More
precisely, we had to augment the life cycle and service layers of the basic OSGI framework. These
changes were necessary to support the monitoring and execution components of the MAPE-K cycle.

5

In the following paragraphs, we first enumerate the technologies that we have used to build our
prototype of the A-OSGi framework and, subsequently, describe in more detail the implementation of
each component.

4.1 Underlying Technologies

The OSGi specification has several implementations, some of the most well-know are: Eclipse Equinox [2],
Apache Felix [4] and Knopflerfish [12]. For the work presented in this paper we have selected the Apache
Felix 1.6.0 implementation. Notice however that changes performed over this implementation, and de-
scribed in this paper, can easily be ported to other existing implementations. Other important component
of our architecture is a HTTP server/container that permits the registering of resource and servlets to
support the deployment of web applications. In this work we used the Pax Web [15] implementation of
the OSGi HTTP service specification [23], that uses the Jetty HTTP Server [10]. The interfaces of the
KC, EC, and MAC components are exported as JMX Managed Beans [17]. Thus, any existing JMX
client (like [19, 20]) can use these components, and subscribe the MAC events, or invoke the KC and EC
methods. This allows the services provided by these components to be used by third party components
and even other applications. Moreover, the operation of the MAC component required the inclusion
of a JVMTI Agent [18] at the JVM level. Finally, the PIE component is based on the Ponder2 policy
interpreter for handling our ECA rules [24].

4.2 MAC Implementation

The MAC component monitors different aspects of the OSGi execution. Each of these aspects has its
own specific requirements in terms of implementation. Namely:

• The MAC monitors the requests received by the HTTP server and stores information concerning
the bundle in charge of processing the request. Therefore, it is able to provide information about
the absolute number of requests processed by each bundle and the relative distribution of requests
among bundles. It also stores the observed latency in the processing of each request. To implement
such functionalities, the HTTP server bundle had to be changed in order to support the interaction
between the entry point for requests in our architecture and the MAC.

• The MAC monitors CPU usage and memory consumption per bundle. In order to extract this
information, some sort of isolation among bundles needs to be implemented. To implement our
prototype, we used a thread based approach to achieve the isolation, by creating a hierarchy of
ThreadGroups that associates a different ThreadGroup to each bundle. To create this hierarchy of
threads, we have altered the life cycle layer of OSGi such that, whenever a bundle is started, the
starting method is executed in a new thread from the ThreadGroup of that bundle. As a result,
all threads created by the starting thread belong to the ThreadGroup associated with the bundle.
Furthermore, clients of a service are provided with a proxy that executes the service methods in a
thread associated to the bundle that registered the service.

We are aware that the thread based approach used in the current prototype has a number of limita-
tions. In first place, it has a non-negligible overhead as requires two context switch in each service
invocation. Furthermore, it is unable to isolate interactions that do not use the service interfaces
(such as when a bundle invokes directly methods of classes from another bundle). Finally, this
approach may cause deadlocks in services with synchronized methods. Therefore, the approach re-
quires a careful configuration of which services need to be isolated. Still, it its able to provide enough
feedback to support the required information to implement many relevant autonomic behaviors.

6

Event Name Event Attributes

CPUUsage BundleID, value, oldvalue
MemoryUsage BundleID, value, oldvalue
RequestsPerSec BundleID, value, oldvalue
Latency BundleID, value, oldvalue
BundleStarted BundleID
BundleStopped BundleID
ServiceRegistered BundleID, ServiceID
ServiceUnregistered BundleID, ServiceID
ClientRegistered ClientBundleID, ServiceID
ClientUnregistered ClientBundleID, ServiceID

Table 1. A-OSGi Context Monitor Event

Given that the problem of providing isolation among OSGi bundles is a challenging research topic
on its own, we expect to incorporate in the future results from complementary on-going research[5].

With thread isolation, CPU usage can be calculated iterating over the threads associated to a
bundle ThreadGroup and sum all the threads CPU time. The same approach can be extended to
memory since its possible to detect the allocation of objects and assign allocations to the thread
that is performing that operation.

• The MAC monitors notifications provided by the OSGi platform concerning the service registration
and bundle life cycle. The binding between a client bundle and a service is monitored by leveraging
on the iPOJO functionalities.

The complete list of events currently provided by the A-OSGi MAC is listed in Table 1.

4.3 EC Implementation

The EC component not only provides an interface to start and stop bundles (something that is directly
supported by the standard OSGi implementation) but, more importantly, provides interfaces to control
how bundles bind to each other and, as a result, to control which of multiple alternative implementations
of a given service can, or should, be used. For that purpose, the EC offers the following mechanims:

bindings obligation: a binding obligation specifies that a bundle which operation requires a given
service will be obliged to use a specific service implementation. The purpose of this mechanism is
to force the use of a service implementation by a bundle.

binding prohibitions: a binding prohibition specifies that a bundle which operation requires a given
service cannot use a specific service implementation. The purpose of this mechanism is to limit the
use of service implementations by bundles.

service property configuration: the EC also provides support to change the value of a property
associated to a service implementation. This functionality can be used to alter properties that the
develloper of the bundle exposed as a service property.

The complete list of action supported by the EC component is listed in Table 2. In order to implement
the EC component we have augmented the OSGi service layer. In A-OSGi, this layer maintains, for
each bundle, the associated obligation and prohibitions. This information is used in run-time to ensure
that bindings among bundles and services satisfy the constraints defined in each moment. We resort to
iPOJO functionality to ensure the correctness of bindings.

7

Action Name Parameters

StartBundle BundleID
StopBundle BundleID
SetClientProhibition BundleID, ServiceID
RemoveClientProhibition BundleID, ServiceID
RemoveClientProhibitionForServiceName BundleID, ServiceName
SetClientObligation BundleID, ServiceID
ChangeServiceProperty ServiceID, Property, Value

Table 2. A-OSGi Actions

A-OSGi Bundle related functions

Function Parameters Returns

getAllBundles BundleID[]
getWebBundles BundleID[]
getBundleName BundleID BundleName
getBundleID BundleName BundleID
getUsedServiceNames BundleID ServiceName[]
getUsedServiceIDs BundleID ServiceID[]
getUsedServiceIDsbyName BundleID, ServiceName ServiceID[]
getAllUsedServicesIDs BundleID ServiceID[]
getProvidedServiceIDs BundleID ServiceID[]
getProvidedServiceNames BundleID ServiceName[]
getUsingBundles BundleID BundleID[]
getAllUsingBundles BundleID BundleID[]

A-OSGi Service related functions

Function Parameters Returns

getAllServices ServiceID[]
getServiceName ServiceID ServiceName
getServiceNames ServiceID ServiceName[]
getServiceBundle ServiceID BundleID[]
getServiceImplementations ServiceName ServiceID[]
getUsingBundles ServiceID BundleID[]
getAllUsingBundles ServiceID BundleID[]
getAllUsingWebBundles ServiceID BundleID[]
getClientProhibitions BundleID ServiceID[]
getServiceProperty ServiceID, Property Value

Table 3. KC interface

4.4 KC Implementation

The KC provides a set of methods that allow to consult runtime information about the installed
bundles and the registered services, as well the dependencies between the client bundles and services. To
implement these functions, we use the module layer to extract information about services that a bundle
is using and the service layer to extract information about the bundles being used by a service. The KC
also provides methods to consult the current set of service obligation or prohibitions. The full interface
of the KC component is listed in Table 3.

4.5 PEI Implementation

For implementing the PEI component we have used the Ponder2 policy interpreter [24]. Ponder allows
to create Managed Objects that we use as adaptors to interact with the MAC, KC and EC components
(using the corresponding JMX MBeans). To describe ECA rules, Ponder provides a language called
PonderTalk. An example of a ECA rule described with PonderTalk, that prints a message whenever a

8

bundle starts, is presented in Listing 1. The use of Ponder2 allows the dynamic definition of the policies,
a property very usefull in a OSGi system due to the dynamic properties of the platform.

Listing 1. Pondertalk ECA rule
newpol icy := root / f a c t o r y / e capo l i c y c r e a t e .
newpol ice event : root / event / bundleStart ;

c ond i t i on : [: bundleID | t rue] ;
a c t i on : [: bundleID |

root p r i n t : ”Bundle id ” + bundleID + ” s t a r t ed ” .
root p r i n t : ”Bundle name i s ” + (bundles getBundleName : bundleID) .

] ;
a c t i v e : t rue .

5 Evaluation

We now illustrate and evaluate the potential of A-OSGi to build autonomic OSGi-based applications.
Our case study uses a Web Application that has been implemented using the architecture described in
the previous Section, and that allows to demonstrate some of the main features of A-OSGi.

The set of OSGi bundles used by our application is depicted in Figure 3. We consider two web bundles
that implement the presentation layer for an on-line store that sells CDs and DVDs. These web bundles
are implemented as individual bundles that register with our altered version of the Jetty web server. Both
web bundles allow remote clients to: i) list a sub set of products, available in the store and currently in
stock, and ii) to get details for a specific product. Information about available items in stock is provided
by a stock service that consults a local database. There are two (independent) bundles that offer this
service with distinct tradeoffs between quality of service and resource consumption. In more detail,
the first implementation of the stock service, simply named Basic, only resorts to the internal database
to provide information about products.The second implementation of this service, named Premium,
additionally relies on on a costumer preferences service, to order the product list according to the client
preferences. Also, the premium service can offer suggestions about other products that may be of interest
to the user and, therefore, returns additional items when the client searches for CDs or DVDs.

Figure 3. Case Study Components

The functionality provided by the Premium implementation, offering personalized content, can improve
the costumer satisfaction and also generate more revenue to the store. Unfortunately, this additional
quality of service comes at the expense of increased resource consumption. In situations where the
server becomes overloaded with requests, it may be preferable to satisfy more requests, using the Basic
implementation, than to provide the Premium service to a subset of clients and drop the remaining

9

requests. Naturally, when the load allows, one would like to serve all requests using the Premium
service. Furthermore, we would like to have the possibility of making these adaptations for each service
independently of each other. For instance, if only the CD bundle is overloaded with requests, it may be
possible to adapt only the stock implementation used by this service, and continue to use the Premium
implementation for DVD buyers. As we will show, the A-OSGi architecture provides support to specify
and implement this sort of policies.

5.1 Using A-OSGi

We now describe how A-OSGi can be used to implement the policy described above for our case study.
The policy can be described by only two rules, depicted in Listing 2. The first rule simply prohibits
any web bundle that is consuming more than 35% of cpu from using the Premium implementation of
the stock service. The second rule removes this prohibition when a web bundle uses less than 5% cpu.
The adequate thresholds for the cpu usage were determined experimentally. This policy ensures that the
most expensive implementation is used, if and only if, the resources are enough to sustain the current
load.

Listing 2. Policy
newpol icy := root / f a c t o r y / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . j j e f . mediaporta l . s tock . s e r v i c e . S tockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock1bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Premium ”) .
(va lue > 35) & (usedstockbundle == stock1bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . s e r v i c e . S tockServ i c e ”) at : 0) .
s e r v i c e s s e tC l i e n tP r oh i b i t i o n : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles s tartBundle : bundleID .
] ;

a c t i v e : t rue .

newpol icy := root / f a c t o r y / e capo l i c y c r e a t e .
newpol icy event : root / event /bundleCPU ;

cond i t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . j j e f . mediaporta l . s tock . s e r v i c e . S tockServ i c e ”) at : 0) .
usedstockbundle := (s e r v i c e s getServ iceBundle : u s ed s t o ck s e r v i c e) .
s tock2bundle := (bundles getBundleID : ”pt . mediaporta l . s tock . Bas ic ”) .
(va lue < 5) & (usedstockbundle == stock2bundle)] ;

a c t i on : [: va lue : bundleID |
u s ed s t o ck s e r v i c e := ((bundles getUsedServiceIDsbyName : \

bundleID name : ”pt . mediaporta l . s tock . s e r v i c e . S tockServ i c e ”) at : 0) .
s e r v i c e s removeCl i entProh ib i t i on : bundleID se rv i c e ID : u s ed s t o ck s e r v i c e .
bundles stopBundle : bundleID .
bundles s tartBundle : bundleID .
] ;

a c t i v e : t rue .

Adaptation is performed with bundle-level granularity. The way the rules are specified does not
require the CD or DVD web bundles to be named explicitly. Therefore, in run-time, depending on the
system load, they may be applied to just the CD service, to just the DVD service, or both. This is
possible because the KC component maintains updated information about each bundle, specifically on
their bindings. Also, since A-OSGi offers the flexibility to choose which services should be monitored, in
this case, it is possible to configure the platform such that only the CD and DVD services are monitored,

10

reducing the monitoring overhead to a minimum. Run-time adaptation is performed by restarting the
target of the rule. This forces iPOJO to reevaluate the bindings of the target bundle, taking into
consideration the new set of rules in the system.

5.2 Performance

To evaluate experimentally A-OSGi we used a workbench composed of two Intel core-2 duo at 2.20
Ghz with 2Gb of memory. Both machines run Linux (Ubuntu 8.10 Desktop Edition) and the Sun Java
Virtual Machine 1.6. Both nodes are connected by a 100 Mbit switch. We deployed A-OSGi in one of
these machines, and loaded the policy depicted in Listing 2. The other machine is used to generate the
workload using Apache JMeter 2.3.2 to emulate clients executing requests to the server. Clients operate
by requesting a list of either DVDs or CDs from the server, and subsequently requesting details on one
of the returned items.

!"#$%&'(%)% *)% +,)% +-)% ,.)%

/0%1$23$'4'%&5)%1$23$'4'%6$1%'$789:(%

0;0%1$23$'4'%&5)%1$23$'4'%6$1%'$789:(%

0;0%1$23$'4'%&+5))%1$23$'4'%6$1%'$789:(%

/0%1$23$'4'%&<))%1$23$'4'%6$1%'$789:(%

Figure 4. Workload Description

During the experiments the web application is subject to 3 different workloads that we have named,
CD/DVD, CD/DVD+, and CD+/DVD+. The CD/DVD workload imposes 50 requests per second to
the CD service and another 50 requests per second to the DVD service. This load is low enough such that
the Premium implementation of the stock service can be used to answer all requests without overloading
the system. The CD/DVD+workload, in addition to the previous requests, imposes a load of more 1.500
requests per second to the DVD service. To sustain this load, one is required to adapt the implementation
of the stock bundle used by the DVD requests (CD requests do not need to be affected by the adaptation
at this point). Finally, the CD+/DVD+ workload includes an excess of 700 requests per second to the
CD service. At this point, both the DVD and CD requests are required to use the Basic implementation
of the stock service to sustain the heavy load.

The system is initiated with the CD/DVD workload. At time 60 the workload is changed to the
CD/DVD+ workload. Subsequently, at time 120 the workload is increased again to CD+/DVD+. Fi-
nally, at time 180 the workload returns to the baseline CD/DVD workload. Each individual workload
was generated by a group of 10 client threads. These workloads are illustrated in Figure 4 (time is
measured in seconds).

The results are depicted in Figure 5. The first plot compares the performance of a static configuration
(providing the premium service) against the autonomic configuration. The adaptations that result from
execution the policy can be inferred by the quality of service provided to the user in plot 5(b). Clearly,
the autonomic configuration is able to ensure a much better throughput than the static configuration,
by dynamically changing to the less expensive implementation of the stock bundle. Plot 5(c) depicts the
total number of requests processed by both configurations. This last plot makes clear that the autonomic
version responds better to the increase in the workload.

Finally, plot 5(d) compares the average request latency of the application running in the A-OSGi
framework against the same application, under the same medium workload, running in a plain OSGi

11

0 50 100 150 200

time (s)

0

1000

2000

3000

4000

th
ro

u
g

h
p
u

t
(r

e
q

u
e

s
/s

)

OSGi

A-OSGi

(a) Throughput

0 50 100 150 200

time (s)

B
a
si

c

Q
u
a
lit

y
o
f
S
e
rv

ic
e

 P
re

m
iu

m

OSGi

A-OSGi

(b) Quality of Service

0 50 100 150 200

time (s)

0

50000

100000

150000

200000

p
ro

c
e

s
s
e

d
 r

e
q

u
e

s
ts

OSGi

A-OSGi

(c) Processed Requests

50 100 150 200

time (t)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

re
q

u
e
s
t
la

te
n

c
y
 (

m
s
)

OSGi

A-OSGi

(d) Overhead

Figure 5. Performance with and without adaptation

framework. This allows to assess the overhead induced by the current implementation of the A-OSGi
mechanisms. The difference is in the order of 25%, which is not surprising, given that many of the
A-OSGi components are not yet fully optimized (in particular the isolation mechanisms required for
detailed monitoring).

5.3 Other Policies

Due to lack of space, we have only discussed and evaluated one of the several policies that could be
applied to the case study. However, we would like to point out some other alternatives that would also be
supported by the A-OSGi framework. Alternatively or in addition to commuting between the Basic and
Premium implementation, the policy could also configure the operation of each of these implementations
(for instance, by changing the number of recommendations returned to the client by the Premium service).
This would require to write rules specific for each bundle implementation, a feature that our simple case-
study does not illustrates. Also, instead of setting individual binding constraints, the global behavior of
the system could be controlled by simply installing or uninstalling bundles on the fly.

6 Conclusions

In this paper we have proposed A-OSGi, a framework that augments the OSGi platform to support
the implementation of autonomic OSGi-based applications. A-OSGi offers a number of complementary
mechanisms to this end, including the ability to extract performance indicators about the execution of
deployed bundles, mechanisms that allow to have a fine grain control of how services bind to each other,
and support to describe the the autonomic behavior of the OSGi application using a policy language.

12

The architecture has been implemented. Experimental results have illustrated the benefits of the
approach: we were able to selectively adapt the implementation of a bundle used by different services,
in order to augment the system performance in face of dynamic workloads. As future work, we plan to
study ways to optimize the performance of some of the A-OSGi components, such as the MAC (by using
more efficient isolation techniques), to reduce the overhead imposed by the autonomic mechanisms.

References

[1] Yixin Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury. Using mimo feedback control
to enforce policies for interrelated metrics with application to the apache web server. Network
Operations and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, pages 219–234,
2002.

[2] Eclipse Equinox. Homepage. http://www.eclipse.org/equinox/.

[3] C. Escoffier, R.S. Hall, and P. Lalanda. ipojo: an extensible service-oriented component framework.
pages 474–481, July 2007.

[4] Felix Apache. Homepage. http://felix.apache.org/.

[5] N. Geoffray, G. Thomas, C. Clément, and B. Folliot. Towards a new Isolation Abstraction for OSGi.
In Proceedings of the First Workshop on Isolation and Integration in Embedded Systems (IIES 2008),
pages 41–45, Glasgow, Scotland, UK, April 2008.

[6] O. Gruber, B. J. Hargrave, J. McAffer, P. Rapicault, and T. Watson. The eclipse 3.0 platform:
Adopting osgi technology. IBM Systems Journal, 2005.

[7] Jarle Hulaas and Walter Binder. Program transformations for light-weight cpu accounting and
control in the java virtual machine. Higher Order Symbol. Comput., 21(1-2):119–146, 2008.

[8] IBM. Autonomic computing: Ibm’s perspective on the state of information technology. IBM Journal,
2001.

[9] IBM. An architectural blueprint for autonomic computing, fourth edition. Technical report, IBM,
2006.

[10] Jetty HTTP Server. Homepage. http://www.mortbay.org/jetty/.

[11] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kinesthetics extreme: an external infrastructure for
monitoring distributed legacy systems. Autonomic Computing Workshop, 2003, pages 22–30, June
2003.

[12] Knopflerfish. Homepage. http://www.knopflerfish.org/.

[13] T Miettinen. Resource monitoring and visualization of OSGi-based software components. PhD thesis,
VTT Technical Research Centre of Finland, 2008.

[14] OW2 Consortium. Jonas - White Paper v1.2. http://wiki.jonas.objectweb.org/xwiki/bin/
download/Main/Documentation/JOnAS5_WP.pdf, 2008.

[15] Pax Web. Homepage. http://wiki.ops4j.org/display/paxwev/Pax+Web/.

13

[16] Spring Source. Spring Dynamic Modules for OSGi. http://www.springsource.org/osgi, 2009.

[17] Sun Microsystems. Java Management Extensions. http://java.sun.com/javase/6/docs/
technotes/guides/jmx/index.html.

[18] Sun Microsystems. Java Virtual Machine Tools Interface. http://java.sun.com/javase/6/docs/
platform/jvmti/jvmti.html.

[19] Sun Microsystems. Jconsole. http://java.sun.com/javase/6/docs/technotes/guides/
management/index.html.

[20] Sun Microsystems. Visualvm. http://java.sun.com/javase/6/docs/technotes/guides/
visualvm/index.html.

[21] Sun Microsystems. Sun GlassFish Enterprise Server v3 Prelude Release Notes. http://docs.sun.
com/app/docs/coll/1343.7, 2008.

[22] The OSGi Alliance. OSGi Service Platform Core Specification, Release 4, Version 4.1. http:
//www.osgi.org/Download/Release4V41, 2007.

[23] The OSGi Alliance. OSGi Service Platform Service Compendium, Release 4, Version 4.1. http:
//www.osgi.org/Download/Release4V41, 2007.

[24] K. Twidle, E. Lupu, N. Dulay, and M. Sloman. Ponder2 - a policy environment for autonomous
pervasive systems. pages 245–246, June 2008.

[25] R.D. van der Mei, R. Hariharan, and P.K. Reeser. Web server performance modeling. Telecommu-
nication Systems, 2001.

14

