
Enabling Fog Computing using
Self-Organizing Compute Nodes

Vasileios Karagiannis, Stefan Schulte
Distributed Systems Group, TU Wien, Austria
{v.karagiannis, s.schulte}@infosys.tuwien.ac.at

João Leitão, Nuno Preguiça
NOVA LINCS, Universidade Nova de Lisboa, Portugal

{jc.leitao, nuno.preguica}@fct.unl.pt

Abstract—The emergence of fog computing has led to the
design of multi-layer fog computing models which are organized
hierarchically. These models commonly dictate the hierarchical
structure to all the participating compute nodes. However,
organizing the compute nodes by adding customized connections
that do not abide by the hierarchical approach, may result
in improved performance due to the network’s properties i.e.,
latency or bandwidth between the nodes. For this reason, in this
paper we propose an alternative to the hierarchical approach,
which is the self-organizing compute nodes. These nodes organize
themselves into a flat model which leverages on the network’s
properties to provide improved performance. The results of the
evaluation show that this approach reduces bandwidth utilization
(∼30%) by using optimized messaging instead of direct messag-
ing. Furthermore, we show that following a flat model, enables
the design of mechanisms for fault tolerance which has been
mostly neglected in existing hierarchical models.

Index Terms—Edge computing, Peer to Peer

I. INTRODUCTION

The advent of the Internet of Things (IoT) has initiated an
era with applications that connect the physical world to the
cloud [1], [2]. To facilitate these applications, a new computing
paradigm has emerged, which is known as fog computing
and extends the cloud to the edge of the network [3]. The
compute resources in fog computing are commonly organized
hierarchically. In the hierarchy, the compute nodes of the
cloud occupy the top layer, the compute nodes of the network
(i.e., routers, switches and access points) reside in the middle
and the compute nodes with sensing and actuating features
reside at the bottom [4]. In such hierarchical models, typically,
computation requests originate from the bottom and travel
upwards the hierarchy until they reach a compute node with
enough resources to execute them [5].

However, these models dictate the hierarchical structure to
all the participating compute nodes. This means that compu-
tation requests always follow the paths of the hierarchy, even
if customized connections (that break the hierarchy) enhance
performance [6], i.e., reduce latency or improve bandwidth
utilization. Based on this observation, we propose an alterna-
tive to the hierarchical approach, which is a flat model built
using the introduced self-organizing compute nodes (SONs).
SONs organize themselves based on a configurable proximity
measure (e.g., hop count, latency, bandwidth, etc.) and then

This work was funded by the European projects: H2020 LightKone (grant
agreement: 732505) and H2020 FORA (grant agreement: 764785).

communicate with each other on paths that minimize the
distance.

Moreover, to account for fault tolerance which has been
mostly neglected in the context of fog and edge computing [7],
[8], we show that the flat model is suitable for implementing
tolerance to node failures. In the flat model, nodes can be
designed to react to failure by creating additional links to other
nodes which are still responsive [9]. In addition, the flat model
resolves the single point of failure which is still a drawback
of the hierarchical approach [10].

In order to make our approach applicable to fog-based
environments, we design SONs considering the identified
requirements of fog computing (cf. Section III-A). According
to these requirements, we implement SONs for providing a
platform for general purpose computations, which exploits all
the available compute nodes of the fog. Each SON maintains
connectivity information about nearby nodes and share its
compute resources in order to execute applications submitted
by a user. Therefore, the SONs organize themselves into a flat
model and are able to receive applications and execute them
as a collective.

The contributions of this work are: We identify the essential
requirements for implementing fog computing that follows a
flat model and we implement SONs that meet these require-
ments. Specifically, the SONs integrate novel mechanisms
for adding new distributed compute nodes to a network, for
achieving fault tolerance and for applying intelligent messag-
ing based on optimization logic.

The rest of this paper abides by the following structure:
Section II contains a discussion of related work. Afterwards,
Section III analyses the design of SONs for fog computing.
Consequently, Section IV describes a prototype implementa-
tion and presents an evaluation which focuses on network
performance by examining the following aspects: scalability
(Section IV-B), fault tolerance (Section IV-C) and intelligent
messaging (Section IV-D). Finally, Section V concludes the
paper and provides future research directions.

II. RELATED WORK

Notable advances in the field of fog and edge computing
commonly follow a hierarchical layered approach [11]. For
instance, Bellavista et al. [12] propose a three-layer architec-
ture for service execution at the edge and Deng et al. [13]
discuss hierarchical service provisioning in distributed edges.

 978-1-7281-2365-3/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

In contrast, the work at hand is inspired by self-organizing
systems which do not use layers. For this reason, in the
following paragraphs we discuss approaches which apply the
concept of self-organization to address computing at the edge
of the network.

Prazeres and Serrano [14] present SOFT-IoT, a platform
for providing interoperability in fog computing environments.
This work is motivated by the variety of different platforms
that originate from the IoT and the lack of one global fog
ecosystem. In this platform, intense data processing occurs in
the cloud, while IoT data can also be processed locally. The
system model consists of three main entities which are: the
devices, the gateways and the servers. The servers integrate a
self-organizing monitoring service. This service is responsible
for the self-organization of the platform and aids in the
operation of other services related to deployment, recovery
and management. However, the scope of this work is the
description of the model and thus, no concrete self-organizing
mechanisms are described. In our work, we design, implement
and evaluate such mechanisms.

Aditya and Figueiredo [15] propose Frugal, a distributed
mechanism that uses online social networks to create a self-
organizing overlay network which can be used as a messag-
ing system for fog computing. The motivation of this work
stems from the challenge to manage and coordinate numerous
fog devices such as sensors, actuators, personal computers
and cloudlets. This study highlights that device to device
communication is a necessary enabler for fog computing
and that decentralized overlay networks can provide scalable
solutions for interconnecting the participating devices. For this
reason, the authors design a mechanism to construct an overlay
network from social graphs by having the devices exchange
information about their neighbors. Notably, this approach
assumes knowledge of social neighbors to build the network.
In contrast, we design mechanisms that do not depend on such
information.

Tato et al. [16] present a self-organizing overlay network
named Koala, which addresses the decentralization of cloud
computing. The Koala overlay lowers the protocol overhead by
eliminating redundant maintenance. This is done by utilizing
the application traffic to refine the network instead of costly
periodic mechanisms. Moreover, this overlay network provides
locality awareness by selecting each routing hop based on
a trade-off between hop count and latency. The participating
nodes of Koala are organized into a ring rather than hierarchi-
cally. However, Koala targets explicitly an environment with
geographically distributed mini datacenters. In our work, we
also consider resource heterogeneous compute nodes.

Ali et al. [17] address the connectivity of fog networks
by tackling the problem of connecting a large number of
IoT devices with distributed fog nodes. The model of this
work assumes that each fog node can serve many IoT devices
whereas, each IoT device is assigned to one fog node. To
connect the involved resources and form fog networks, an
optimization problem is formulated, which aims at minimizing
latency subject to the maximum workload capacity of the fog

nodes. For solving this problem, a self-organizing algorithm
is proposed. According to this algorithm, IoT devices and
fog nodes have preferences towards each other and each IoT
device tries to connect with the most preferred fog node.
Since the scope of this work is to form fog networks, fault
tolerance mechanisms are not discussed. In our work, we
present self-organizing compute nodes but also, we implement
a mechanism to cope with potential node failures.

Finally, Song et al. [18] propose opportunistic data sharing
which allows devices in edge computing environments to
discover each other and retrieve required data. The authors
motivate this work by noting that edge environments hold
unique conditions for implementing data sharing. Each device
may contain data and might be in need of certain different
data, but it is not known a priori what kind of data each
device carries or needs. Since the participating devices are
in the proximity of each other for a limited amount of time, it
is during this period that they have to organize themselves,
form connections and exchange data. For this reason, the
authors design mechanisms for discovering all the data within
nearby edge devices and for forming different connections for
different chunks of data while choosing the devices of the
closest proximity in order to minimize the overhead. This
approach targets data exchange among nearby nodes which
form small scale networks while the mechanisms we propose,
aim at being applicable to large scale network as well.

III. SELF-ORGANIZING COMPUTE NODES

In this section, we introduce the SONs for computing
at the edge of the network. To do so, we first identify
essential requirements for fog computing in Section III-A and
we provide basic definitions in Section III-B. Afterwards in
Sections III-C to III-H, we design SONs which explicitly
satisfy these requirements.

A. Fog Computing Requirements

In order to design and implement SONs for fog computing,
in the following, we identify the requirements which have to
be met:

Proximity awareness. Fog computing aims at improv-
ing the performance of latency-sensitive applications [19].
To achieve this, proximity awareness is necessary because
distributing information among nearby nodes improves the
communication efficiency [20]. Even though connecting nodes
based on proximity has been achieved in self-organizing
systems, in fog computing, the proximity information can be
used further for ensuring that the application demands are met
(e.g., due to the stringent latency requirements).

Fault tolerance. Maintaining connectivity in fog computing
can be difficult. When nearby compute nodes become unre-
sponsive, moving the computations to the cloud may impact
the performance of the applications [21]. Hence, mechanisms
for achieving fault tolerance become challenging.

Intelligent messaging. Since the compute nodes in fog
computing are assumed to be proximity-aware, customized
messaging techniques can further improve the communication

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

among the participating nodes and achieve better utilization of
the available resources [22].

Scalability. Fog computing extends the cloud to the edge
of the network [3]. Coordinating all the involved resources
requires special attention for the communication mechanisms
which are expected to scale massively [20].

Heterogeneity. Fog computing includes a variety of re-
source heterogeneous compute nodes which will be deployed
on a variety of environments [3]. For this reason, supporting
node heterogeneity becomes essential.

Resource sharing. A distinguishing characteristic of fog
computing is that it enables latency-sensitive computations to
be executed by a group of shared resources [23]. Therefore,
mechanisms for sharing resources and for invoking the execu-
tion of tasks in nearby compute nodes become crucial.

B. Definitions

This section presents basic definitions which are used here-
inafter. The network of all the participating compute nodes is
referred to as a fog network (e.g., Fig. 1). A compute node that
implements logic to aid in the process of adding new compute
nodes to the fog network as well as to cooperate with them and
share resources is referred to as a SON. To enable the execution
of applications by multiple compute nodes which operate as a
collective, SONs form groups (cf. the groups shown in Fig. 1).
Two SONs that belongs to the same group are referred to as
neighbors. As shown in Fig. 1, a SON may belong to different
groups at the same time. Hence, the neighbors of one SON do
not necessarily belong to the same group. For instance, not all
neighbors of the cloud compute nodes in Fig. 1 belong to the
same group. Each group consists of a finite number of SONs.
SONs that belong to the same group share information about
each other through the group graphs.

A group graph is a weighted and complete graph whereby
the vertices represent the SONs and the weights of the
arcs represent a proximity measure (e.g., hop count, latency,
combinations thereof, etc.). The vertices of the group graphs
maintain properties of their corresponding SONs. Such prop-
erties are: resource capacities and resource availability as well
as hosted services and their requirements. These are used for
sharing computations, as discussed later in Section III-D. In
addition, each SON stores within the group graph a list of its
neighbors which are used for fault tolerance, as explained later
in Section III-E. The SONs of the same group maintain the
same information in their group graph. When a SON belongs
to many groups, all the respective groups graphs are stored
within the SON. The group graphs are updated using a data
store (for each group) which is replicated in all the SONs of
a group. The data store synchronizes based on events.

For simplicity, in this work we assume that the number of
SONs in each group is bounded by a maximum group size
parameter and that the number of groups that a SON belongs to
is not bounded. However, each SON can configure these values
based on its resource capacities. In this case, the max group
size refers to the number of SONs that can belong to the same
group. This parameter is constrained by the SONs’ processing

COMPUTE NODES

Cloud

Network
Laptop

Mobile

LINKS

Logical Link

Group

Fig. 1: An example of a fog network consisting of nine self-
organizing compute nodes which form three groups.

capacity (CPU) because in order to process the group graphs,
complex algorithms may be necessary (e.g., shortest path).
The max number of groups parameter refers to the number of
groups that a SON can be a member of. This parameter is
bounded by the storage capacity because for each group that
a SON belongs to, the related information of the group graph
mush be kept in the local data store.

Regarding application deployment, we use a model which
targets the deployment of applications on distributed com-
pute nodes which are represented by a graph [24]. Each
application consists of one or more services. Each service
is an executable file which is deployed independently to the
others but potentially interacts with them. The services may
have requirements [25]. These requirements can be related to
hardware (e.g., CPU, memory), compute nodes (e.g., a service
requires to be deployed on a specific compute node), services
(e.g., a service needs to be deployed at the same compute node
as another service) or network (e.g., the latency value between
two services needs to be less/more than a threshold). For the
application to be executed, all the services must be deployed.

C. Proximity Awareness

In this section, we present how SONs organize themselves
with proximity awareness. To do so, we assume a fog network
of one SON and we describe the process of adding new SONs
to the network. Each time a new SON is added, its proximity
to other SONs is measured and integrated in the group graph.
This information can be used for ensuring that the application
requirements are satisfied when distributing the services in the
fog network, as discussed later in Section III-D. The process
that a new SON has to follow in order to be added to a fog
network, is presented below and described in Algorithm 1
which follows the notation of Table I.

1) Adding a New SON: Initially, a new SON Snew is added
by a contact SON Scon which already belongs to the fog
network. Thus, in the case that Snew requests to be added to a
previously formed fog network, the address of Scon is assumed
to be known. In case Snew wants to start the formation of a
new fog network, Scon represents another SON which does

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The notation used in Algorithm 1.

Symbol Description
Snew A new SON to be added to the fog network.
Scon A previously added SON used as contact.
Sclo The SON in LGScon closest to Snew .
Sfar The most distant SON in GSclo

.
Gnew A new group for adding Snew and Scon.
GSclo

The group in LGScon that contains Sclo.
LGScon The list of groups that Scon belongs to.

not belong to any fog networks. In any case, Snew is assumed
to know the address of Scon a priori.

Snew requests to be added through Scon which responds
with the list of the group graphs LGScon it belongs to (line 8).
Then, Snew makes a system call to traceroute (a command for
measuring network paths) in order to estimate the proximity
(using hop count and latency) of all the SONs in LGScon

(line 9) and selects the group GSclo
that the closest SON Sclo

(based on the proximity measure) belongs to (line 12). Next,
Snew updates GSclo

by adding itself and the distances to the
other group SONs (line 13) and shares the updated graph with
the SONs of GSclo

(line 14). Each time a Snew is added to
GSclo

, all the SONs of GSclo
check the group size by counting

the number of vertices in GSclo
(line 15). In case the size is

greater than the maximum group size parameter, all SONs
examine GSclo

locally (without network interactions) and find
the SON Sfar that resides the farthest away from the rest
(line 16). To define a metric for finding Sfar , we denote the
SONs of a group with N members as S1, S2, ... , SN and
the weight of the arc that connects two SONs Si and Sj as
WSi,Sj

. The most distant SON Sfar is the one for which:

N∑
i=1

WSfar,Si = max

{
N∑
i=1

WS1,Si , ...,

N∑
i=1

WSN , Si

}
i.e., the SON for which the sum of the weights of the arcs that
connect it to the rest of the SONs in the group is the maximum
among all the SONs of the group. If there are multiple
candidates (i.e., equal sum of weights) for becoming Sfar, we
choose the first occurrence which is the same in all the group
SONs since their groups graphs are identical (replicated). Sfar

is then removed from GSclo
(line 17), i.e., leaves the group and

rejoins the fog network using the same process of Algorithm 1
and Snew as contact. In case Snew == Sfar (line 18), GSclo

is removed from LGScon
(line 19) and Snew joins the group of

the closest SON among the SONs that remain in LGScon . The
same operation continues for as long as Snew leaves GSclo

for being the most distant and until all groups LGScon
are

examined (line 28). If Snew != Sfar (line 20) or if the size
of GSclo

is smaller or equal to the maximum group size after
Snew is added (line 24), then Snew has joined the fog network
as member of GSclo

.
2) Creating a New Group: When all the groups of Scon

are at capacity and Snew == Sfar in all groups of LGScon

(line 29), a new group is created to accommodate Snew.
Specifically, in this case Snew creates a new group graph Gnew

(line 30) containing only itself (i.e., Snew), the Scon and the

Algorithm 1: Process of adding a new SON
1 int maxGroupSize // maximum group size
2 SON Scon

3 List LGScon

4 SON Sclo

5 SON Sfar

6 GroupGraph GSclo

7 boolean flag=false // true when Snew is added

8 LGScon = requestLGScon (Scon)
9 LGScon .findAllSonDistances()

10 for i = 1 to LGScon .size() do
11 Sclo = LGScon .findClosestSon()
12 GSclo

= Sclo.getGroupGraph()
13 GSclo

.add(this) // this = Snew

14 GSclo
.updateAllSons()

15 if GSclo
.size() > maxGroupSize then

16 Sfar = GSclo
.findMostDistantSon()

17 GSclo
.remove(Sfar)

18 if this == Sfar then
19 LGScon .remove(GSclo

);
20 else
21 flag = true
22 break
23 end
24 else
25 flag = true
26 break
27 end
28 end
29 if flag == false then
30 GroupGraph Gnew

31 Gnew .addSons(this, Scon)
32 Gnew .addAllSonDistances()
33 Gnew .updateAllSons()
34 end

arc between them, and shares Gnew with Scon (line 33). Other
SONs can be added to Gnew upon request until the maximum
group size is reached.

Notably, when replacing the most distant nodes with new
ones of closer proximity, the disposition of the fog network
improves because groups tend to contain SONs that reside
close to each other (based on the proximity measure). The
decision to use Snew as contact for Sfar enables Snew

to be added to the group of LGScon which contains Sclo

without rearranging other groups of LGScon . The alternative
to use Scon as contact for Sfar may result in a ripple effect
that rearranges all the groups of LGScon

. This effect occurs
because Sfar selects one of the groups of LGScon

in contrast
to the former case, in which Sfar selects one of the groups
of Snew (which is new and thus, it does not belong to other
groups). Even though this ripple may improve the disposition
of the fog network, it also increases the overhead of adding
new SONs. In this work, we avoid this ripple effect in order to
achieve higher scalability, as discussed later in Section III-H.

D. Resource Sharing

After building a fog network using the mechanism of
Section III-C, a user can submit a request for application
execution to any of the participating SONs. This request
includes i) link addresses of repositories for downloading the
executable services (or the services) and ii) the requirements

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

(a) Step 1: C discovers the unresponsive B. (b) Step 2: C sends join-request to E. (c) Step 3: C is added and B is removed.

Fig. 2: Example of the fault tolerance mechanism when SON C discovers the unresponsive SON B.

of the services. After submitting a request to a SON Sapp

(i.e., the SON to which the user submitted the request),
Sapp examines the groups it belongs to in order to find if
one of these groups can meet the application requirements.
This is done locally (without network interactions) using the
information stored in the group graphs. If one of the groups
can host the application successfully, Sapp shares the services
and their requirements with the selected group and initiates
the application execution. The services are instantiated in
the SONs using system calls. If none of the groups that
Sapp belongs to can host the application, Sapp forwards the
request for application execution to another SON Sapp2. Sapp2

performs the same procedure but on different groups (i.e., the
groups it belongs to).

Due to the way SONs are organized in groups, even though
Sapp and Sapp2 belong to the same group, they may also
belong to different groups. Therefore, a request for applica-
tion execution is examined by different groups when being
forwarded to SONs of the same group. For instance, consider
a request that is originally submitted to a network SON in
Fig. 1 and is examined for the corresponding group. By being
forwarded to the cloud SON, it can be examined by a second
group because the cloud SON belongs to two groups. This
way, requests spread in an epidemic manner within the fog
network. Concrete optimization heuristics for placing services
on resources represented by a graph based on the application
requirements, have been discussed in our previous work [24].

E. Fault Tolerance

According to the way that new SONs are added, fog
networks follow a flat model in which different groups are
connected through common SONs (cf. Fig. 1). In this model,
if a SON Sunr which belongs to only one group becomes
unresponsive, the fog network remains connected. However,
if Sunr belongs to other groups as well, the fog network
is divided into a number of disjoint networks that equal
to the number of the groups that Sunr belongs to. In this
case, these disjoint networks operate independently from each
other and the SONs of each network cannot collaborate with
the rest of the fog. Therefore, a fault tolerance mechanism
for maintaining connectivity for the case that one of the
participating SONs fails, disconnects or departs from the fog
network, is essential.

The fault tolerance mechanism we design relies on the
application traffic to detect unresponsive SONs. When the
services of Sunr do not respond to the services of other SONs,
Sunr is detected. Then, the responsive SON Sres that detected
Sunr triggers a recovery process. According to this process,
Sres requests to join each one of the groups that Sunr belongs
to in order to maintain the connectivity with all the disjoint
networks of the fog. To do so, Sres requests to be added to the
fog network again through a responsive neighbor of Sunr. The
neighbors of Sunr are known through the group graphs. Fig. 2
shows an example of the recovery process in three steps.

To maintain normal operation of the applications, when
Sunr is detected, Sres examines the group graph to check
if any services are deployed on Sunr. In positive case, Sres

triggers application redeployment. During this process, Sres

examines if redeploying only the services of Sunr on other
SONs of the same group, keeps the application requirements
satisfied. If it does, only the services of Sunr are redeployed.
Otherwise, the application follows the initial submission pro-
cess, as described in Section III-D.

By using this fault tolerance mechanism, unresponsive
nodes (if any) are detected and removed using the application
traffic. Thus, assuming normal operation of an application
that requires the SONs to communicate frequently, the fog
network recovers from failures regularly. Additionally, if Sunr

disconnects and reconnects to the fog network without having
been missed (i.e., no message was addressed to Sunr while
being offline), no further actions are required since connec-
tivity remains the same. This is especially useful in unstable
networks (e.g., with wireless or mobile devices) which are
prone to momentary loss of connection.

F. Intelligent Messaging

Since each SON maintains a weighted and complete graph
representation of the groups it belongs to, it is possible to
design intelligent messaging for improving the communication
efficiency. In this work, we claim that instead of messaging
multiple SONs independently with the same message, mes-
saging neighbors with the command to forward the message
towards the destination SONs, may improve bandwidth uti-
lization. To support this claim we formulate the following
optimization problem.

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

Given any group graph G = (V,E) with V being the set
of the vertices corresponding to the SONs, E = {e1, e2, ...}
being the set of the arcs and We being the weight of the arc e
corresponding to hops. In G, assume a SON S that wants to
send a message to a set R of SONs within G. In this scenario,
let U be a set of all the trees that start from the vertex which
corresponds to S and reach the vertices that correspond to the
SONs of R and the cost function:

c(T) =
∑
e∈T

We

with T ∈ U and U ⊆ E

The cost function represents the bandwidth utilization of
sending a message from S to all the SONs of R as the
summary of hops that have to be traveled until the message
is sent. The optimization goal is to send the message with
minimum cost, i.e.,

min {c(T) : T ∈ U}

Based on this goal, when S sends a message within the same
group, it sends this message on a tree to/through other SONs
in order to minimize the cost. We use this cost function to
reduce bandwidth utilization within groups in order to improve
bandwidth management in fog networks. The formulation of
this problem is identical to the formulation of the minimum
spanning tree problem (of P complexity) with known solutions
provided by the algorithms of Prism and Kruskal [26].

The reason we focus on bandwidth utilization is that fog
computing intends to handle massive amounts of IoT data
which may cause bottlenecks [23]. However, by altering
the proximity measure, different optimization logic is also
possible. For instance, assuming that the proximity measure
corresponds to throughput, processing the group graph may
show that messaging a SON through an intermediate node
results in a path with higher throughput [27].

Notably, according to the proximity measure used to enu-
merate the arcs, the paths of the graph may not be bidirec-
tional. This is the case when the cost to travel from SON A to
SON B is different than from B to A. In this case, the group
graphs should represent these paths with separate directed arcs
and their respective weights.

Based on intelligent messaging, we also design queries
which are crucial to IoT applications due to the growing
number of devices [8]. Traditional querying occurs through
flooding which generates a significant number of duplicate
messages [9]. In our proposed approach, due to the way
new SONs are added, fog networks maintain an important
property which is that there are no circles connecting different
groups. This makes it possible to design a querying mecha-
nism which spreads queries epidemically without generating
duplicate messages. This mechanism can be initiated by any
participating SON using the following process.

First, a query is sent to all the neighbors of the sender SON.
Then, each of the receivers examines the query locally and
forwards it to all its neighbors, apart from the neighbors of

the group from which the message was received. This process
continues until no transmission is pending by which time, all
SONs have received the query exactly one time. The SONs
that match the query respond to the sender SON. Since a
fog network can scale massively or because the sender is
interested only in nearby SONs, queries can be initiated with
an expiration value based on groups traveled.

G. Heterogeneity

To address SONs with diverse resource capacities, we define
the max group size (based on CPU) and the max number
of groups (based on memory) in Section III-B. These two
parameters can be configured individually by each SON and be
taken into account during the construction of the fog network.
This ensures that each SON has enough resources for the
required control operations, i.e., to store the group graphs,
to implement intelligent messaging, etc.

In addition, we foresee the participation of resource con-
strained nodes (e.g., small devices with microcontrollers con-
nected to sensors and actuators) that cannot implement the
mechanisms discussed within this work. Such nodes can still
join, but through a SON that acts as a gateway to/from the
fog network. This way, all the SONs of the fog network can
access values from the sensors and activate/deactivate actuators
according to the logic of the respective applications. In the
northbound interface of a SON that acts as a gateway, there
is a SON API whereas in the southbound interface, the SON
acts as an access point to wired/wireless resource constrained
devices. Alternatively, the southbound interface may lead to
sensor networks while implementing the corresponding API.

H. Scalability

Decentralized protocols are designed to scale by not relying
on global knowledge of the system [28]. For this reason, SONs
do not store information of the whole fog network. Instead,
SONs maintain only the group graphs which store information
about neighbors. The number of neighbors of each SON is
bounded by the max group size and the max number of groups.
Thus, the information that is stored within each SON, is not
affected by the size of the fog network. Additionally, control
operations such as adding new SONs to the fog network and
recovering from failure, affect only neighbors while the rest
of the fog network remains stable.

I. Improvements

In this section, we describe tweaks that improve perfor-
mance by avoiding certain situations that may arise. When
using intelligent messaging, messages are sent on a minimum
spanning tree. However, there can be many minimum spanning
trees starting from the sender node. In this case, we choose
the tree that bears minimum latency. Latency is measured as
the number of hops in the path of the message that is received
by the last SON.

To implement fault tolerance, SONs store their neighbors
in the group graphs. This information can be useful to contact
nodes for redirecting join-requests to groups with few SONs

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

SON JOINING

(a) Number of exchanged control messages
for each new SON that joins the fog network
(for different group sizes).

SON JOINING

(b) Minimum, average and maximum number
of exchanged control messages for each new
SON that joins the fog network.

SON JOINING

(c) Sample standard deviation of the average
values of control messages for each new SON
that joins the fog network (Fig. 3b).

Fig. 3: Analysis of the overhead for each new SON that joins the fog network.

in order to fill formerly created groups before creating new
ones. This can be positive because during messaging, larger
groups result in larger spanning trees which enhance the effect
of the optimization logic.

According to the process that new SONs are added, Sfar

re-joins the fog network through the Snew that took its place.
However, Snew belongs to only one group (since it just joined)
to which Sfar is the most distant. Having Sfar re-join through
Snew results in the creation of a new group that contains only
Snew and Sfar. Instead, it is better to have Snew join Sfar

because there is the chance that Sfar belongs to other groups
as well, which are not at capacity.

IV. EVALUATION

For evaluating the SONs, we develop a prototype which
implements the necessary functionality to build and maintain
fog networks. The prototype implementation along with the
code of the evaluation can be found online [29]. With these
tools, we conduct an evaluation that focuses on network
performance using the following process. First, we build an
underlying network that resembles the Internet topology using
PeerSim [30] and then, we use the code of the prototype in a
simulation that builds a fog network on top of the generated
topology. For this evaluation, we run 100 experiments which
are performed on randomly generated underlying topologies
in order to show results from various cases. These results
are related to i) scalability (Section IV-B), ii) fault tolerance
(Section IV-C) and iii) intelligent messaging (Section IV-D).
However, before we discuss the results, we mention details
and limitations of the developed prototype.

A. Prototype Details and Limitations

The prototype is based on a Java Web server developed
using Spring Boot 2.0 and JgraphT 1.2.0 (a library for cre-
ating and processing graphs). By using JgraphT, every SON
implements an object for each group graph, which stores all
the necessary information about the neighbors. The reason we
use JgraphT is that it includes the implementation of various
graph processing algorithms (e.g., shortest path, spanning tree,
etc.) which can be applied to the group graph objects. Such
algorithms are useful for implementing some of the features

of the SONs like intelligent messaging or joining based on
shortest proximity.

The current version of the prototype aims at building a
fog network for measuring network-related metrics. For this
reason, a basic API is implemented along with the respective
mechanisms to offer the following functionalities: New SONs
organize each other in groups, as described in Section III-C.
SONs also implement the fault tolerance mechanism in order
to maintain connectivity in case of failures, as discussed in
Section III-E. For communication within the fog network,
intelligent messaging based on bandwidth minimization is
implemented along with the querying mechanism, as discussed
in Section III-F. Additionally, the improvement tweaks are
implemented, as presented in Section III-I.

However, the system calls required for executing applica-
tions described in Section III-D, are not completed. Moreover,
we do not consider resource constrained devices, as described
in Section III-G. Notably, these functionalities are not nec-
essary for this evaluation since our goal is to show that: i)
the self-organizing mechanism for adding new compute nodes
to a fog network, does not generate considerable overhead,
ii) fog networks that follow a flat model (rather than the
hierarchical) can cope well with failure and iii) intelligent
messaging provides significant benefits compared to direct
messaging.

B. Scalability

To evaluate the scalability of the proposed approach, we
analyze the overhead of adding new SONs from the cloud and
the edge, to a fog network. Starting from a fog network of one
SON and by adding another one until the network consists of
10,000 SONs, we measure the number of control messages
exchanged for each new SON that is added (Fig. 3). This
metric also includes the necessary messages to keep the local
data stores updated. In Fig. 3a, we plot the average results
(from 100 randomly generated scenarios) for different values
of maximum group size. The values we choose correspond
to small groups (5 members), medium groups (10 members),
large groups (20 members) and very large groups (40 mem-
bers). Fig. 3b plots again the average values of using very

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

8
7

3
8

.1
8

1
2

5
9

.2
5

2
.2

6

0
.3

0
.0

1

6
9

6
9

.0
6

1
0

2
8

.3
8

2
.2

2

0
.3

4

0

5
1

8
8

.7
1

8
0

9
.8

2

1
.2

4

0
.2

3

0

3
3

9
9

.2
4

5
9

9
.8

1

0
.8

3

0
.1

1

0
.0

1

1
6

6
9

.1
2

3
3

0
.1

8

0
.6

4

0
.0

6

0

0

2000

4000

6000

8000

10000

1 2 3 4 5

N
U

M
B

E
R

 O
F

 S
O

N
S

NUMBER OF GROUPS EACH SON BELONGS TO

10000 SONs 8000 SONs 6000 SONs 4000 SONs 2000 SONs

Fig. 4: Analysis of the number of groups that each SON belongs to in various fog network sizes.

large group sizes. However, to provide a better approximation
of the general case, Fig. 3b also plots the minimum and
maximum values (among 100 random scenarios) excluding 5%
of extreme minimum and maximum values, respectively. The
sample standard deviation of the average values (of Fig. 3b)
is shown in Fig. 3c. The other group sizes exhibit similar
behavior. To acquire these results, contact SONs are selected
randomly based on a uniform distribution.

Moreover, Fig. 3b shows the regression lines formed by the
Least Squares method that aim at depicting the dependence of
the overhead on the size of the fog network. The regression
equations are: y = 0.0011x+ 442.2 with coefficient of deter-
mination R2 = 0.0106, y = 0.0005x+199.55 with coefficient
of determination R2 = 0.0038 and y = −0.00001x+65.18914
with coefficient of determination R2 = 0.00001 for maximum,
average and minimum, respectively. The significance F of the
regression outputs for the average and the maximum are less
than .0001. For the minimum, F is .7476.

Fig. 3a shows that the average number of control mes-
sages stabilizes without intense irregularities and does not
necessarily increase for each new SON independently of the
group size. The regression results of Fig. 3b, also support this
observation. Specifically, the regression output of the average
case shows a significance F value of less than 0.0001 which
means that we can reject the null hypothesis that the variables
are unrelated. The coefficient of determination R2 is very
low (0.0038), indicating that the average protocol overhead is
not explained by the size of the fog network. The regression
coefficient is also very low (0.0005) and suggests that for each
unit of increase in the network size, the overhead increases by
0.0005 which is a very slow rate of increasing overhead. The

TABLE II: Standard deviation of the average values in Fig. 4.

2000 4000 6000 8000 10000
SONs SONs SONs SONs SONs

1 group 22.50 36.15 40.13 57.79 65.58
2 groups 22.49 36.25 40.08 57.69 65.52
3 groups 0.84 0.96 1.10 1.61 1.64
4 groups 0.23 0.31 0.56 0.66 0.57
5 groups 0.00 0.10 0.00 0.00 0.10

maximum values exhibit similar behavior with a significance
F value of less than 0.0001, low coefficient of determination
(0.0106) and a regression coefficient that suggests 0.0011
increase of the overhead for each unit of increase in the
fog network size. The coefficient of determination for the
minimum case is also very low (0.00001) and the regression
coefficient suggests 0.00001 overhead reduction for each unit
of increase in the network size. The significance F value is
0.7476 meaning that we do not reject the null hypothesis that
the variables are unrelated. Therefore, based on these results
we can claim that the overhead of new SONs being added to
a fog network does not depend on the network size.

Since we do not use the max number of groups, as discussed
in Section III-G, we present Fig. 4 which shows the average
number of groups that the SONs of the fog network (various
sizes) belong to, and Table II which shows the respective
sample standard deviations. This experiment is performed in
very large groups. Nevertheless, the other group sizes exhibit
similar behavior.

Interestingly, we note that the vast majority of SONs be-
longs to one group and the number of SONs that belong to
more groups decreases rapidly when the number of groups
increases. The reason that this metric is important is that it
shows that while the fog network grows, SONs do not impose
on each other to store a growing amount of information.

The results of these experiments show that the overhead of
adding new SONs does not depend on the fog network size
which means that when the size of a fog network grows, the
overhead does not increase. This is an objective of the SONs,
as discussed in Section III-H, which advocates scalability.
According to a recent literature review [31], fog systems
need to operate at large scale, while most of the examined
approaches do not meet the scalability criterion. Therefore,
showing that fog networks scale well when the compute nodes
follow the flat model using self-organizing mechanisms, may
have a positive impact on the design and implementation of
fog computing systems.

C. Fault Tolerance

To analyze how efficiently SONs cope with failure, we
present Fig. 5 (with results from 100 randomly generated sce-

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

(a) Percentage of responsive
SONs that remain connected af-
ter 50% of the fog network has
become unresponsive.

(b) Percentage of responsive
SONs that remain connected
after various unresponsiveness
rates are induced.

Fig. 5: Analysis of fault tolerance.

narios). First, we show how well the fault tolerance mechanism
discussed in Section III-E, is able to deal with unresponsive
SONs. To do so, we use group sizes of 5, 10, 20 and 40
SONs, and we configure randomly 50% of the SONs to be
unresponsive. Consequently, we initiate a global query which
refines the fog network. Then, we measure the percentage of
responsive SONs that remains connected and plot it in Fig. 5a.

Moreover, to assess fault tolerance under dynamic condi-
tions with SONs that join/leave concurrently, we design the
following process. We configure randomly 2% of the SONs
to be unresponsive, initiate a global query to refine the fog
network and measure the percentage of the responsive SONs
that remain connected. After that, we have all the formerly
unresponsive SONs join the fog network again and we add 2%
to the unresponsiveness rate. This process continues repeatedly
until unresponsiveness reaches 20%. Fig. 5b plots the results.

Fig. 5a shows how the max group size affects the fault
tolerance of the fog network and how larger groups are
more resilient to failures. Additionally, Fig. 5b shows results
from assessing fog networks under dynamic conditions. Even
though device failure is likely to occur in fog computing, cur-
rent studies do not address fault tolerance [7], [8]. Therefore,
results which show that fog computing using self-organizing
mechanisms can cope well with failures, provide a promising
research direction.

D. Intelligent Messaging

To evaluate the effect of applying intelligent messaging (i.e.,
integrating a proximity measure and respective optimization
logic) as discussed in Section III-F, we implement the follow-
ing process. First, we build a fog network using the SONs.
Then, we build another distributed network (used as a baseline)
based on the same logic of using groups but without placing

(a) Decreased bandwidth uti-
lization by using optimization
logic when messaging within
fog networks.

(b) Increased latency by using
optimization logic that mini-
mizes bandwidth when messag-
ing within fog networks.

Fig. 6: Analysis of intelligent messaging.

new compute nodes in the group of the closest proximity. In
the former case, messages are sent using bandwidth minimiza-
tion whereas, in the latter case each message is sent directly
to all the neighbors of each compute node. In both cases, we
initiate a global query from one compute node to the whole
network. Consequently, we measure bandwidth utilization as
expressed in the cost function of the optimization problem
(cf. Section III-F), i.e., the number of hops needed to be
traveled until all nodes receive the query. Fig. 6a shows the
percentages by which bandwidth utilization is reduced when
applying intelligent messaging, for various fog network sizes.

Notably, the messaging strategy we use favors bandwidth
utilization but disregards latency delays. In the baseline, when
messages are sent to all compute nodes directly, the latency
might be lower. For this reason, we repeat the previous
experiment and measure latency as the number of hops in
the path of the query that is received by the last compute
node. Fig. 6b shows the latency penalty due to the applied cost
function, for various fog network sizes. These values represent
the percentages by which latency is increased compared to the
baseline. All values of Fig. 6 are again based on the average
of 100 randomly generated scenarios.

We consider these results satisfactory because we use a
bandwidth-related cost function. Fig. 6a shows a bandwidth
gain of around 30% with a slight tendency to improve while
the size of the fog network grows. The advantage of this ap-
proach is that the proximity measure and the cost function can
be modified to pursue various goals in terms of performance,
as discussed in Section III-F.

V. CONCLUSION AND FUTURE WORK

Within this paper, we propose self-organizing compute
nodes which build fog networks without following the com-

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

monly applied hierarchical approach. SONs implement mech-
anisms for organizing themselves based on proximity, for
achieving fault tolerance and for applying intelligent mes-
saging based on optimization logic. From the experiments
we conduct using SONs, we deduce that fog computing can
benefit from self-organizing mechanisms due to the following:
i) The overhead of the control messages when adding new
compute nodes, remains stable despite the growing size of
the fog network, which advocates scalability. ii) Fog networks
become resilient and maintain connectivity even when par-
ticipating compute nodes fail or disconnect from the network,
which makes fog computing fault tolerant. iii) Compute nodes
can communicate using intelligent messaging based on a
configurable cost function which enables fog computing to
pursue various goals in terms of performance.

Despite the promising results, we consider this work pri-
marily as a starting point for further research in the field of
flat models for fog networks. So far, our focus has been on
communication aspects while future directions in this field in-
clude deploying fog computing applications on self-organizing
compute nodes in order to evaluate application execution
metrics. Regarding the arrangement of the compute nodes,
future work can explore techniques for shifting participating
nodes to groups with nodes of closer proximity at runtime,
which may improve the disposition of the fog network over
time. Moreover, designing mechanisms for ensuring system
stability while integrating sensor networks in fog computing
scenarios is also a promising research direction.

REFERENCES

[1] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[2] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” ICAS Transaction on IoT and Cloud Computing, vol. 3, no. 1,
pp. 11–17, 2015.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Workshop on Mobile Cloud Computing
(MCC), pp. 13–16, ACM, 2012.

[4] W. Li, I. Santos, F. C. Delicato, P. F. Pires, L. Pirmez, W. Wei,
H. Song, A. Zomaya, and S. Khan, “System modelling and performance
evaluation of a three-tier cloud of things,” Future Generation Computer
Systems, vol. 70, pp. 104–125, 2017.

[5] V. Karagiannis, “Compute node communication in the fog: Survey and
research challenges,” in Workshop on Fog Computing and the IoT (IoT-
Fog), pp. 1–5, ACM, 2019.

[6] V. Karagiannis, A. Venito, R. Coelho, M. Borkowski, and G. Fohler,
“Edge computing with peer to peer interactions: Use cases and impact,”
in Workshop on Fog Computing and the IoT (IoT-Fog), pp. 1–5, ACM,
2019.

[7] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, pp. 680–698, 2018.

[8] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman, L. Gao, Y. Xi-
ang, and R. Ranjan, “Fog computing: Survey of trends, architectures,
requirements, and research directions,” IEEE Access, vol. 6, pp. 47980–
48009, 2018.

[9] J. C. A. Leitão and L. E. T. Rodrigues, “Overnesia: A resilient overlay
network for virtual super-peers,” in 33rd International Symposium on
Reliable Distributed Systems (SRDS), pp. 281–290, IEEE, 2014.

[10] D. Poola, M. A. Salehi, K. Ramamohanarao, and R. Buyya, “A taxonomy
and survey of fault-tolerant workflow management systems in cloud and
distributed computing environments,” in Software Architecture for Big
Data and the Cloud, pp. 285–320, Elsevier, 2017.

[11] V. Souza, X. Masip-Bruin, E. Marı́n-Tordera, S. Sànchez-López, J. Gar-
cia, G.-J. Ren, A. Jukan, and A. J. Ferrer, “Towards a proper service
placement in combined fog-to-cloud (f2c) architectures,” Future Gener-
ation Computer Systems, vol. 87, pp. 1–15, 2018.

[12] P. Bellavista, A. Zanni, and M. Solimando, “A migration-enhanced
edge computing support for mobile devices in hostile environments,”
in 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 957–962, IEEE, 2017.

[13] S. Deng, Z. Xiang, J. Yin, J. Taheri, and A. Y. Zomaya, “Composition-
driven iot service provisioning in distributed edges,” IEEE Access, vol. 6,
pp. 54258–54269, 2018.

[14] C. Prazeres and M. Serrano, “Soft-IoT: Self-organizing FOG of Things,”
in 30th International Conference on Advanced Information Networking
and Applications Workshops (WAINA), pp. 803–808, IEEE, 2016.

[15] S. Aditya and R. J. Figueiredo, “Frugal: Building degree-constrained
overlay topology from social graphs,” in 1st International Conference
on Fog and Edge Computing (ICFEC), pp. 11–20, IEEE, 2017.

[16] G. Tato, M. Bertier, and C. Tedeschi, “Koala: Towards lazy and
locality-aware overlays for decentralized clouds,” in 2nd International
Conference on Fog and Edge Computing (ICFEC), pp. 1–10, IEEE,
2018.

[17] M. Ali, N. Riaz, M. I. Ashraf, S. Qaisar, and M. Naeem, “Joint cloudlet
selection and latency minimization in fog networks,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 9, pp. 4055–4063, 2018.

[18] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content centric
peer data sharing in pervasive edge computing environments,” in 37th
International Conference on Distributed Computing Systems (ICDCS),
pp. 287–297, IEEE, 2017.

[19] B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient nfv-enabled mobile edge-cloud for low latency mobile applica-
tions,” IEEE Transactions on Network and Service Management, vol. 15,
no. 1, pp. 475–488, 2018.

[20] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[21] P. Varshney and Y. Simmhan, “Demystifying fog computing: Character-
izing architectures, applications and abstractions,” in 1st International
Conference on Fog and Edge Computing (ICFEC), pp. 115–124, IEEE,
2017.

[22] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A taxonomy,
survey and future directions,” in Internet of everything, pp. 103–130,
Springer, 2018.

[23] Y. Liu, J. E. Fieldsend, and G. Min, “A framework of fog comput-
ing: Architecture, challenges, and optimization,” IEEE Access, vol. 5,
pp. 25445–25454, 2017.

[24] V. Karagiannis and A. Papageorgiou, “Network-integrated edge com-
puting orchestrator for application placement,” in 13th International
Conference on Network and Service Management (CNSM), pp. 1–5,
IEEE, 2017.

[25] A. Brogi, S. Forti, and A. Ibrahim, “How to best deploy your fog
applications, probably,” in 1st International Conference on Fog and Edge
Computing (ICFEC), pp. 105–114, IEEE, 2017.

[26] P. C. Pop, W. Kern, and G. J. Still, “The generalized minimum spanning
tree problem,” Faculty of Mathematical Sciences, University of Twente,
2000.

[27] S. Brennan and M. Rabinovich, “Improving communication through
overlay detours: Pipe dream or actionable insight?,” in 38th International
Conference on Distributed Computing Systems (ICDCS), pp. 1422–1431,
IEEE, 2018.

[28] M. A. Kaafar, T. Turletti, and W. Dabbous, “A locating-first approach
for scalable overlay multicast,” in 25th International Conference on
Computer Communications (INFOCOM), pp. 1–2, IEEE, 2006.

[29] “Son project repository,” in www.bitbucket.org/BasilKaragiannis/sonproject/.
Accessed online: 10 Jan. 2019.

[30] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator,” in
9th International Conference on Peer-to-Peer Computing (P2P), pp. 99–
100, IEEE, 2009.

[31] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow,
and P. A. Polakos, “A comprehensive survey on fog computing: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 416–464, 2017.

Authorized licensed use limited to: b-on: UNIVERSIDADE NOVA DE LISBOA. Downloaded on September 24,2020 at 22:08:20 UTC from IEEE Xplore. Restrictions apply.

