
Data Management for mobile applications dependent
on geo-located data

Nuno M. Santos, Luís M. Silva, João Leitão, Nuno Preguiça
NOVA LINCS & NOVA School of Science and Technology

{nmf.santos,lmt.silva}@campus.fct.unl.pt,{jc.leitao,nuno.preguica}@fct.unl.pt

Abstract
An increasing number of mobile applications share location-
dependent information, from collaborative applications and
social networks to location-based games. In such applica-
tions, users are interested in information related to their im-
mediate surroundings or destination whenmoving instead of
data referring to events or state in distant areas. The current
database systems enforce uniform consistency models that
do not take into consideration data geographical locality,
requiring applications to implement ad-hoc solutions that
are sub-optimal at best, and can lead to poor performance in
the worst case.
In this paper, we argue in favour of consistency models

where data location is a key property of data items that is
leveraged to govern the operation of replication protocols
and the guarantees provided to data accessed by users. To
illustrate this, we present FocusDB, a new data management
system designed to leverage both object and client location
to combine stronger and weaker levels of consistency on
a per-object basis. The system discussed here represents
a first step in a larger ongoing research effort focused on
deriving new consistency models and replication protocols
that leverage our previous observation.

Keywords: Location-based Data, Tunable Consistency, Data
Replication, Mobile Applications.
ACM Reference Format:
Nuno M. Santos, Luís M. Silva, João Leitão, Nuno Preguiça. 2023.
DataManagement formobile applications dependent on geo-located
data. In Proceedings of 10th Workshop on Principles and Practice of
Consistency for Distributed Data (PaPoC 2023). ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Modern distributed applications have increasingly shifted to-
wards supporting the interaction among users, with mobile
devices becoming one the primary mediums for deploying

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PaPoC 2023, May 08, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and interacting with new applications. Therefore, support-
ing efficient access to shared data among mobile devices
has become more relevant. Examples of such applications
include multiplayer games, maps services with real-time
crowdsourced traffic information and alerts, or any data dis-
tribution system serving localised content such as ads, local
news alerts, or social media features.
A factor that is common to all these applications is that

data objects have an associated geographic location, and the
location of users impacts significantly the data objects that
are accessed and modified by those users. This offers the op-
portunity to design distributed data storage systems that can
be optimised by taking into consideration this factor when
dealing with replica placement and access pattern predic-
tion. Maybe less obviously, this also offers the opportunity
to have specialised data replication protocols that take into
consideration the location associated with data objects, since
users will be less concerned about the detail or freshness
of data that is far away from their current positions (or to
their destination, when moving). This allows to focus the
operation of a distributed data management systems, and as-
sociated replication protocols, in providing the greater detail
and improved data freshness for data that is associated to
locations in the vicinity of users, which will be of primary
interest to them.

However, existing commercial data storage solutions, such
as Cassandra [11], MongoDB [21], CosmosDB [22], among
others are designed to be general purpose, and therefore do
not take into consideration in their data models and repli-
cation protocols aspects such as data (and user) location.
Conversely, current consistency models, from strong con-
sistency to weak consistency, are not defined to take into
consideration data properties such as location to define the
guarantees that are provided to users that access replicas (for
instance considering the location of that user). Consequently,
they cannot adapt their behaviours or provide clear guaran-
tees regarding the location associated with data objects and
the location to where data is replicated being it other servers
or mobile clients. [23] This hinders the opportunity to further
improve the performance and scalability of the current state
of the art solutions at best (in terms of latency, throughput,
and overall usefulness of data exposed to clients), and can
lead to performance degradation and lower user experience
at its worse.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


PaPoC 2023, May 08, 2023, Rome, Italy Nuno M. Santos, Luís M. Silva, João Leitão, Nuno Preguiça

To respond to this need, we present FocusDB, a first step in
a wider research effort dedicated to propose novel data con-
sistency models and replication protocols that use location
associated with data, server replicas, and users as a primary
factor to govern the data management strategy. FocusDB
achieves this first step through two main contributions. The
first is a novel data model that is: 𝑖) capable of adapting the
consistency guarantees enforced on data exposed to clients
taking into account the location associated to data and the
indications of the user related to locations of interest; and
𝑖𝑖) automatically adjusts the detail of exposed data, through
aggregations, that are guided by the location associated to
the data and the user. The second contribution is a client
data caching mechanism that leverages the locations of in-
terest provided by the user, to ensure good performance
even in low connectivity scenarios. We have developed an
initial prototype of FocusDB using MongoDB as the under-
lying technology for the system storage layer. However, any
other type of database, such as geospatial databases, could
have been explored since the developed model is agnostic
to how the data is stored. Our initial experimental results
show that FocusDB, despite not fully realising our vision for
geo-located data models, consistency models, and replica-
tions protocols, already brings significant advantages in the
context of a use case application dedicated to assist users in
finding parking spots for cars within cities.
The remainder of this paper is organised as follows. Sec-

tion 2 discusses relevant related work and background. Sec-
tion 3 presents the system model and architecture adopted
in the design of FocusDB. Section 4 discusses the data model
used in FocusDB while Section 5 provides details on the
design and implementation of the main components of Fo-
cusDB. Section 6 presents the use case application used in
the evaluation work reported in Section 7. Finally, Section 8
concludes the paper and discusses future work.

2 Related Work and Background
The section overview related works in distinct areas.

Data Replication: Replicating data is a standard tech-
nique in distributed systems used to tolerate failures, ensure
high availability, and improve performance. Some systems
[3, 13] implement replication solutions that provide strong
consistency, creating the illusion of a single copy of the
database. Strong consistency is often unsuitable for mobile
computing settings where it is useful to have replicas of
some objects in mobile devices, which may frequently be-
come disconnected since such consistency models require
coordination among replicas to perform operations.
In those contexts, weak consistency solutions, such as

eventual consistency [29], are more commonly used, where
operations can be performed on a replica without need-
ing immediate coordination with other replicas [4, 16, 25].
Weak consistency solutions often lack restrictions on the
amount of inconsistency between replicas, which can be a

limiting factor in the development of applications where
users need some form of data freshness guarantees. Ap-
proaches like the Escrow Transactional Method [15], Epsilon
Serializability[18], and Continuous Consistency Model [30]
impose limits on the amount of inconsistency a system can
tolerate, regulating data operations to prevent from exceed-
ing the established limits without coordination.
The authors of [20] propose a system where the consis-

tency level of a replica can change over time, depending on its
distance from a pivot point. Unlike these systems, FocusDB
reduces the consistency of the data based on a location prop-
erty that is intrinsically associated with each individual data
object, hence leveraging a novel data model. FogStore [6],
shares similarities with FocusDB, particularly regarding the
notion of Context of Interest. In FogStore, data requests made
within a region of interest are assigned a strong consistency
level, while requests outside the region receive a weak con-
sistency level. However, FocusDB differs from FogStore as
it not only adapts the consistency level of data but also can
reduce the detail of the data exposed to clients (based on
aggregations) to achieve improved performance.
Mobile Systems: In the field of mobile computing, sev-

eral systems have been developed to address the specific
challenges of this computing environment [16, 25–28]. For
example, Bayou [25], Simba [16], and Legion [26] offer oper-
ations with weak consistency guarantees, while Fidelity [28]
provides strong consistency but with limited performance
in terms of latency and throughput. The system described
in [27] allows users to specify their desired consistency level
for data access RethinkDB [19] provides real-time push noti-
fications to connected clients, aiming for low latency, high
throughput real-time interactions. However, none of the
above focus on the location associated with data objects,
servers, and clients to govern the system’s operation offer-
ing different guarantees on data exposed to clients.

Time-series databases:When dealingwith large amounts
of time-stamped data from sources such as IoT devices, finan-
cial transactions, or sensor networks, time-series databases
can provide highly efficient solutions. InfluxDB [10] is a
distributed time-series database that uses a SQL-like query
language and supports data retention policies for data expira-
tion. TimescaleDB [9] is built on top of PostgreSQL and pro-
vides automated data chunking and compression for efficient
storage and retrieval. Graphite [1] stores data hierarchically
and supports various data sources and visualisations. Ad-
ditionally, Prometheus [17] is designed for monitoring and
alerting, supporting data scraping, aggregation, and query-
ing. Time-series databases offer optimised performance for
data with a time attribute - in our work we try to achieve
similar benefit for data with a location attribute.
Furthermore, FocusDB focuses on adapting the consis-

tency offered to different clients based on interests provided



Data Management for mobile applications dependent on geo-located data PaPoC 2023, May 08, 2023, Rome, Italy

by the user regarding specific locations. This allows applica-
tions to exploit better a trade-off between consistency and
performance based on application-specific logic.

3 FocusDB Architecture and Overview
FocusDB is a data management and replication system aimed
at supporting applications running in mobile devices. With
FocusDB, developers can easily define the data model for
their application and specify how that data should be organ-
ised and delivered to clients. Data has an associated location
and can be delivered at different levels of detail. The system
architecture consists of services that store and distribute
application data to clients according to their preferences.

System Model and Design The system includes multiple
mobile clients communicating with a central server over a
network. Clients can request data or execute actions, and
the server replies accordingly, managing and providing con-
sistent data views to all clients that depend on the client
locations of interest.

In FocusDB, all data objects have a location property that
identifies the location associated with that data object. When
clients create new data objects, these will either be associated
with a location indicated by the user or optionally be tagged
as the location of the user device when the object is created.

Data objects can have any number of attributes. However,
some of these attributes may only be relevant for users at
a given proximity of the location associated with that data
object. Hence FocusDB is able to filter the attributes of an
object that are exposed to a client based on the distance
of the user to the location associated with that data object.
To this end, all client operations are geographically tagged
by the mobile applications with geographic metadata that
FocusDB leverages for this purpose. This allows FocusDB
to expose multiple representations of a data object as users
reach the location associated with that data object.
The Cloud-Side Architecture. The cloud-side architec-

ture is composed by two primary components: an API and
storage layers. The API layer is an intermediary between
the clients and the database, allowing access to data access
and manipulation methods. It is responsible for translating
client requests into database queries, executing the logic of
requests, and proactively notifying clients about changes rel-
evant to the clients’ cached data. The storage layer manages
data collections (providing durability) and a set of materi-
alised views based on the data attributes. These views consist
of unique data objects or aggregations of objects grouped by
a specific attribute to display different levels of detail. This
component is supported by a database system. We do not
prescribe a specific database system since the FocusDB API
layer can be easily adapted for different solutions.
The Client-Side Architecture. FocusDB clients interact

with the servers using a client library, submitting queries and
updates and receiving change notifications. Clients keep a

local cache for supporting immediate replies to applications
and to reduce the on the central component.

When the client performs a read operation, it sends a data
request to the API, which communicates with the storage
layer to retrieve relevant data. The API then returns the data
to the client, which stores it in its local cache, and subscribes
to notifications for the returned data. The server notifies the
client whenever a write operation modifies, adds, or removes
data relevant to that request.

Note that depending on the distance of the client to the lo-
cation of returned data objects, not all updates will generate
a notification to the client (i.e., clients in close vicinity will
receive more updates than clients farther away from the lo-
cation of those data objects). For a write operation, the client
submits the request to the FocusDB API, which contacts the
storage layer to reflect the change in the data layers. If the
database system does not have a view manager, FocusDB’s
view manager is triggered asynchronously to update all the
relevant entries in the views being managed by the system.

4 FocusDB Data Model
The data model for our system acts as a key/value store and
offers different consistency levels for the same object.
Objects represent individual data elements stored in the

system, assigned a unique identifier, and stored in collections
with a flexible schema. Data objects have multiple attributes,
depending on the application. We name Base Data, the ob-
jects written directly by the application, and Derived Data
the objects computed from Base Data or other Derived Data
objects. These computations can be as simple as reducing
the visibility of specific attributes or as complex as combin-
ing features from multiple objects using operations such
as union, intersect, and general aggregations. The results
are stored in the Derived Data object and can be used for
further analysis or operations. The system supports basic
CRUD operations on both Base Data and Derived Data ob-
jects. Changes made to objects can be carried out by both
clients and servers, triggering a view to be recomputed. How-
ever, clients cannot change views directly. Instead, they must
operate over full representations of Base Data objects.
Collections are system-wide and do not assume object lo-

cality. A single collection maintains all the Base Data objects.
A node should contain a subset of the collection, containing
the objects pertaining to that replica node location. A single
collection can store base and derived objects, or multiple
collections can be employed, one for each data type.
Views are defined as a function over a data collection or

other views. They are built concerning the global data col-
lection, meaning that the definition of views is global within
the system. A view can filter data fidelity, exploiting its geo-
referenced attributes. It is not bounded to any particular data
object or locality properties of one client. The definition of
a view is materialised in an object. It contains a name, the
collection it applies to, and, most importantly, a function



PaPoC 2023, May 08, 2023, Rome, Italy Nuno M. Santos, Luís M. Silva, João Leitão, Nuno Preguiça

representing the query used to compute that view. Views are
materialised server-side to avoid overloading clients with
frequent computations. The views may need to be updated as
Base Data reflected in them are updated. Views have limited
geographical relevance, allowing for redirection of compu-
tations to the cloud and edge server responsible for that
region.

5 FocusDB Components
Data API At the Data API level, two categories of operations
can be defined: those to be performed by the programmers
for managing collections and views, and the remaining be-
longing to the client interaction with actual data. The first
kind comprises endpoints for views and collections opera-
tions as its creation and update. The second includes all read
and write operations (inserts, updates, deletes, and gets) for
the data objects.
Two parameters must be defined for the data read end-

point: the view to be accessed and a condition. The condition
can be of two types. If the condition is a geographical area,
the system returns all data objects whose location belongs
to that area. On the other hand, if the condition is a query
based on a data object attribute, the system returns only the
objects from the attribute view that belong to the inputs
that correspond to the query. We assume this attribute has
geographical meaning, serving as a code for an area, but it
is not a requirement.

The view selected in the request also alludes to an implicit
choice at the level of data detail. It is determined that the
responsibility of increasing or decreasing the level of detail
is that of the application using the FocusDB client, which
implies that the application must be able to determine when
it is appropriate to increase the level of detail of the requests.
With the write endpoints, a client can insert new objects and
update or remove those already in the database.
The reader should note that in this work, we do not con-

sider operations issued by malicious clients, leaving this
point for future iterations.
Incremental View Manager Since read operations are

performed on materialised views of the system, these must
be appropriately updated so that clients can receive the latest
data version. However, only some database systems perform
incremental management of materialised views, and those
that perform do not take location properties into considera-
tion to govern this process. [2]

In systems lacking such a mechanism, entries of each view
are instantiated based on the collection contents at that mo-
ment. That is the case of MongoDB, which our prototype
uses as the storage backend. As the base collection suffers
modifications, the views remain static and do not reflect the
current state of the data unless manually requested. There-
fore it is necessary to address the lack of this component so
that the system can operate more efficiently.

In the context of FocusDB, the incremental view man-
agement system consists of a component responsible for
reacting to updates on the data collections by reflecting
them in the materialised views. This component acts asyn-
chronously concerning the API, as updating the views can
be time-consuming. From that, slight inconsistencies can be
introduced during the update process. However, given the
reduced dimension of the inconsistency and the benefits of
the component, we can consider that acceptable.

Materialised views are pre-computed and stored in collec-
tions, speeding up query processing by avoiding recomput-
ing the results of a query each time it is executed. When an
object is created or modified, the incremental view manager
processes the modifications and determines the impact on
the materialised views. To improve the overall process oper-
ations are queued per view. Only after a certain threshold
will the view manager batch all the operations concerning
each view, followed by the batch execution of the updates. If
the update affects a materialised view, the incremental view
manager recomputes only the portion of the view that needs
to be updated and stores the revised results in the database.
This approach is more efficient than recomputing the entire
view, as it only updates the portion that needs to be changed.

Notification System This component ensures that client-
side cached data does not become outdated in relation to the
data maintained in the centralised component of FocusDB.
When a client requests data through the API, in most cases,
it declares that it is interested in a specific data set and there-
fore wants the information belonging to that set to be kept
updated over time.

We could encumber the client by determining that the mo-
bile application is responsible for periodically refreshing its
cached relevant objects by reissuing the requests that created
those cache entries However, this method would be ineffi-
cient since the application itself has no notion of whether
the data that the user is interested in has been changed or
not. In cases where data is rarely updated, such a pooling
approach would result in unnecessary resource consumption
both for request processing and communication.

To avoid this, FocusDB relies on a notification system that
is responsible for notifying clients when relevant updates
happen to data that is cached by the client and whose the
client has registered interest. This mechanism works as fol-
lows: when a client accesses data (through the API) for the
first time (being it data for a location never accessed or ac-
cessing data previously accessed by with a different detail
level) the client can request also to become subscribed to
the information channel associated with that data (which
is achieved by activating a flag on the data requests). If the
client does so, the system subscribes the client to the interest
set corresponding to the data returned by that request. From
that moment on, any updates that changes the data returned
by that request are also propagated to all subscribers of that



Data Management for mobile applications dependent on geo-located data PaPoC 2023, May 08, 2023, Rome, Italy

interest set. This prevents unnecessary data requests from
mobile applications.

Thismechanism is relevant towards our approach of location-
dependent consistency guarantees. Note that data that refers
to locations further away from the user locations of interest
might less relevant to the user. In those cases, this mecha-
nism, allows to avoid transmitting all individual updates for
that data, or making them with a lower frequency, than for
data that is highly relevant for the user, allowing to reduce
traffic even further.

6 Use Case Application
FocusDB unique approach makes it suitable for various ap-
plication scenarios, such as multiplayer games, map services,
and hyperlocal data distribution systems. For instance, Fo-
cusDB can provide real-time data sharing based on the loca-
tion of users in multiplayer interactive games [8, 12], players
can subscribe to data near their location, and the system can
adapt the consistency and exposed detail of the data based
on locations to ensure optimal performance. Filter and de-
liver relevant information to users in mapping services [7]
by implementing real-time crowdsourced traffic and alert
information filtered based on the current location of the used.
Adapt the level of detail of the data based on device loca-
tion in hyperlocal data distribution systems [5, 24], saving
bandwidth for the client and costs for advertisers.
In this paper we focus on a use case location-based ap-

plication that showcases the need for a new consistency
model.

Where to Park?
For many drivers in densely populated areas, finding a

parking spot is a daily challenge. Whether commuting to
work or visiting an unfamiliar place, knowing where to park
can make all the difference. That is the motivation for our
envisioned use case, theWhere to Park? application.
The Where to Park? application is a mobile application

for smartphones and automobiles that keeps track of and
helps find empty parking spots. The app provides users with
multiple levels of detail on parking availability across in
different regions, from city-wide to street-level views. Users
can see an approximate number of available spots for an area
or zoom in on the street and see all the parking locations and
their availability. The app can be used for both street parking
(free or paid) and private parking facilities (e.g. shopping
malls). For private parking, the app can retrieve real-time
data on availability through an API provided by the parking
operator. For street parking, the app can rely on a network of
sensors installed in each spot that communicates with nearby
parking meters or crowdsourced data from users who report
available spots.

7 Evaluation
We conducted a series of experiments to evaluate the perfor-
mance of FocusDB in a mobile application scenario, relying

on the use case application introduced in the previous sec-
tion. Our system, called FocusDB (labelled FOCUS on plots),
is equipped with Incremental ViewManager and Notification
System mechanisms and is backed by a MongoDB database.
To evaluate the system, we built a workload generator that
mimics multiple mobile clients. This workload generator can
launch a configurable number of clients, each running a set
of predefined trips and workloads, to realistically evaluate
FocusDB’s capabilities with a realistic usage. To enhance the
test environment and introduce an element of unpredictabil-
ity, we implemented a server-side Ghost Client mechanism
that randomly changes the status of chosen parking spots,
keeping the dataset dynamic and invalidating cached data.
We also implemented two additional ways the application
could interact with data to compare our implementation. The
first method, (dubbed BASIC in plots), involves translating
the client’s request directly to MongoDB Queries, which the
server executed directly on the database, providing to clients
full object representations. The second method, (labelled
INDEX ) in plots, allows the MongoDB instance to create in-
dexes on relevant attributes that the client application would
query, speeding up server responses.
Geographic dataset. We have leveraged real datasets

to generate the movements of clients and changes to data
objects in our experiments. The first dataset includes the
geographical coordinates of roughly 500 taxi trips in the city
of Porto, Portugal, and was enriched with the assistance of
the OpenRouteService API [14]. This resulted in a dataset
with more precise coordinates per trip. The second dataset
contains the coordinates of approximately 500, 000 parking
locations in Porto, derived from the taxi trips dataset, to
ensure that the trips executed by clients intersect with park-
ing spots. We used the taxi trips dataset to compute client
movements and the parking spots dataset to represent the
locations of relevant data objects.
Experimental setup. In our experiments, we used the

Nova SST Computer Science Department’s Compute Cluster,
which offers a variety of machine types. Both the server-side
and clients were deployed on machines equipped with an
AMD EPYC 7281 CPU (16 cores/32 threads), 128 GiB DDR4
2666MHz of RAM, and dual 10 Gbps network capacity. On
the server machine, we deployed an instance of FocusDB,
supported by a MongoDB database that was seeded with the
500, 000 parking spots, precomputed views at the neighbour-
hood and street level, and a RabbitMQ instance to support
the notification system. Use used a single instance of the
workload generator that was responsible for managing the
lifecycle of multiple simulated a variable number mobile
clients. Each simulated client makes requests to the server
based on a workload derived from the taxi trips dataset.
Experiment scenario. Our experiments focus on com-

paring the performance of FocusDB with the two alternative
architectures (BASIC and INDEX ) when the requests issued
by clients are limited to read operations.With using FocusDB,



PaPoC 2023, May 08, 2023, Rome, Italy Nuno M. Santos, Luís M. Silva, João Leitão, Nuno Preguiça

101 102 103

Throughput (req/s)

10−2

10−1

100

101

La
te

nc
y 

(s
)

1

1

1

50

50

50

200

200 200

BASIC
INDEX
FOCUS

Figure 1. Throughput Latency per Number of Clients

0 50000 100000 150000 200000
Number of Requests

0

100000

200000

300000

400000

500000

600000

Av
g 

re
sp

on
se

 S
ize

 (b
yt

es
)

BASIC
INDEX
FOCUS

(a)

1 10 20 30 40 50 60 70 80 90100 125 150 200
Number of Nodes

0

50000

100000

150000

200000

Av
g.

 N
um

be
r o

f R
eq

ue
st

s

BASIC
INDEX
FOCUS

(b)

Figure 2. (a) Avg. Response Size per Avg. Requests and (b)
Avg. Number of Requests per Number of Clients

the client initiates a request by specifying the end location
of the trip, which indicates the interest set regarding parking
spots. In response, the client receives a neighbourhood view
with a count of available parking spots in that area. As the
client approaches the destination, the level of detail in the
exposed data increases, with the client obtaining a count of
free spots on the desired street. When the client is almost
at the destination, the level of detail increases again, and
the requests return complete objects describing the parking
spots on the street, enabling the client to choose a spot to
park. During each experiment, the request detail distribu-
tion for each trip is set at 80% aggregations and 20% full
objects. Each client performs five trips per test, which are
repeated three times, and the results are averaged. Ghost
Clients simulate 100 parking spots availability changes ev-
ery two seconds. These settings are applied for the Basic
and Index implementations, with all requests producing full
objects. The experiment measures throughput and latency,
evaluated as a function of the number of clients and hence
the total number of client requests.

Figure 1 presents a throughput × latency plots comparing
all alternatives, thatshows that using FocusDB (FOCUS) leads
to improved performance when compared with the BASIC
and INDEX alternatives. The plot shows that the mechanisms
employed in the design of FocusDB allows to support similar
number of clients offering lower latency and achieving a
higher throughput. The BASIC alternative exhibits the lowest

throughput and highest latency among the three alternatives.
The INDEX alternative falls in between the other two in
terms of performance.
Figure 2 captures some of the factors that explains the

performance improvement of FocusDB, which are derived
from leveraging the location associated with data objects
and clients issuing requests. Figure 2(a) reports on the size
of the responses issued by the centralised component to
clients. It clearly shows that the response size of FocusDB
is significantly smaller when compared with the two other
alternatives. This leads to a more effective usage of network
resources (and computational resources to compute those an-
swers). Figure 2(b) reports the number of requests issued by
clients of the different alternatives for an increasing number
of clients. It shows that the caching mechanism of FocusDB
combined with its notification system, allows for an extreme
reduction on the requests issued to the centralised compo-
nent. Note that our notification mechanism allows clients
to still have access to up-to-date date for the locations of
relevance for the client.

8 Conclusion and Future Work
In this work, we presented FocusDB, a novel data manage-
ment system specifically designed to support geo-located
data in a mobile environment. The system’s twomain compo-
nents, a flexible data model and a client caching mechanisms
and notification system, work together to adapt data delivery
based on both location associated with data objects and the
location of the user. Our preliminary experimental evalu-
ation shows that FocusDB, when compared with classical
alternatives, shows significant performance improvements
by leveraging our data model that allows to expose different
levels of detail based on location.
This effort is the first on a longer research line that aims

at exploiting the location property as a governing factor to
build distributed large-scale data stores. In particular we plan
on formalising consistency models that take into account
location of both data objects, and servers/clients manipu-
lating that data, and efficient replication protocols that can
implement such consistency models.

Acknowledgments
This work was partially supported by FCT/MCTES grants,
through NOVA LINCS (UIDB/04516/2020) and the PhD Re-
search Scholarship awarded to Luís Silva (2021.05686.BD).
Dataset expansion was possible by API access to OpenRoute-
Service from HeiGIT gGmbH.

References
[1] 2023. Graphite DB. http://graphiteapp.org/
[2] Abdulaziz S Almazyad and Mohammad Khubeb Siddiqui. 2010. In-

cremental view maintenance: an algorithmic approach. International
Journal of Electrical & Computer Sciences 10 (2010).

[3] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-
pher Frost, Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev,

http://graphiteapp.org/


Data Management for mobile applications dependent on geo-located data PaPoC 2023, May 08, 2023, Rome, Italy

Christopher Heiser, Peter Hochschild, et al. 2013. Spanner: Google’s
globally distributed database. ACM Transactions on Computer Systems
(TOCS) 31, 3 (2013), 1–22.

[4] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s
highly available key-value store. ACM SIGOPS operating systems review
41, 6 (2007), 205–220.

[5] Foursquare. 2023. Foursquare City Guide. https://foursquare.com/city-
guide

[6] Harshit Gupta and Umakishore Ramachandran. 2018. Fogstore: A
geo-distributed key-value store guaranteeing low latency for strongly
consistent access. In Proceedings of the 12th ACM International Confer-
ence on Distributed and Event-based Systems. 148–159.

[7] Google Inc. 2023. Nearby API. https://developers.google.com/nearby
[8] Niantic Inc. 2023. Pokémon GO. https://pokemongolive.com/
[9] Timescale Inc. 2023. TimescaleDB : SQL made scalable for time-series

data. TimescaleDB Whitepaper.
[10] InfluxData. 2023. InfluxDB Times Series Data Platform | InfluxData.

https://www.influxdata.com/
[11] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentral-

ized structured storage system. ACM SIGOPS operating systems review
44, 2 (2010), 35–40.

[12] João Leitão, Pedro Ákos Costa, Maria Cecília Gomes, and Nuno M.
Preguiça. 2018. Towards Enabling Novel Edge-Enabled Applications.
CoRR abs/1805.06989 (2018). arXiv:1805.06989 http://arxiv.org/abs/
1805.06989

[13] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant
Agrawal, and Amr El Abbadi. 2013. Low-Latency Multi-Datacenter
Databases Using Replicated Commit. Proc. VLDB Endow. 6, 9 (jul 2013),
661–672. https://doi.org/10.14778/2536360.2536366

[14] Pascal Neis and Alexander Zipf. 2008. Openrouteservice. org is three
times “open”: Combining OpenSource, OpenLS and OpenStreetMaps.
GIS Research UK (GISRUK 08). Manchester (2008).

[15] Patrick E O’Neil. 1986. The escrow transactional method. ACM Trans-
actions on Database Systems (TODS) 11, 4 (1986), 405–430.

[16] Dorian Perkins, Nitin Agrawal, Akshat Aranya, Curtis Yu, Younghwan
Go, Harsha V Madhyastha, and Cristian Ungureanu. 2015. Simba:
Tunable end-to-end data consistency for mobile apps. In Proceedings
of the Tenth European Conference on Computer Systems. 1–16.

[17] Björn Rabenstein and Julius Volz. 2015. Prometheus: A Next-
Generation Monitoring System (Talk). USENIX Association, Dublin.

[18] Krithi Ramamritham and Calton Pu. 1995. A formal characterization
of epsilon serializability. IEEE Transactions on Knowledge and Data
Engineering 7, 6 (1995), 997–1007.

[19] RethinkDB. [n.d.]. RethinkDB Architecture. https://rethinkdb.com/
docs/architecture/

[20] Nuno Santos, Luís Veiga, and Paulo Ferreira. 2007. Vector-field consis-
tency for ad-hoc gaming. In ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing.
Springer, 80–100.

[21] William Schultz, Tess Avitabile, and Alyson Cabral. 2019. Tunable
consistency in mongodb. Proceedings of the VLDB Endowment 12, 12
(2019), 2071–2081.

[22] Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran,
Ankur Shah, Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez Gua-
jardo, Anna Wawrzyniak, Samer Boshra, et al. 2015. Schema-agnostic
indexing with Azure DocumentDB. Proceedings of the VLDB Endow-
ment 8, 12 (2015), 1668–1679.

[23] Luís M Silva, Frederico Aleixo, Albert van der Linde, João Leitão, and
Nuno Preguiça. 2022. Geo-located data for better dynamic replication.
arXiv preprint arXiv:2205.01045 (2022).

[24] TelegramTeam. 2019. Location-Based Chats, Adding ContactsWithout
Phone Numbers and More. https://telegram.org/blog/contacts-local-

groups
[25] Douglas B Terry, Marvin M Theimer, Karin Petersen, Alan J Demers,

Mike J Spreitzer, and Carl H Hauser. 1995. Managing update conflicts
in Bayou, a weakly connected replicated storage system. ACM SIGOPS
Operating Systems Review 29, 5 (1995), 172–182.

[26] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, Santi-
ago Castiñeira, and Annette Bieniusa. 2017. Legion: Enriching internet
services with peer-to-peer interactions. In Proceedings of the 26th In-
ternational Conference on World Wide Web. 283–292.

[27] Albert van der Linde, João Leitão, and Nuno Preguiça. 2020. Practi-
cal client-side replication: weak consistency semantics for insecure
settings. Proceedings of the VLDB Endowment 13, 12 (2020), 2590–2605.

[28] Kaushik Veeraraghavan, Venugopalan Ramasubramanian, Thomas L
Rodeheffer, Douglas B Terry, and Ted Wobber. 2009. Fidelity-aware
replication for mobile devices. In Proceedings of the 7th international
conference on Mobile systems, applications, and services. 83–94.

[29] Werner Vogels. 2009. Eventually Consistent. Commun. ACM 52, 1 (jan
2009), 40–44. https://doi.org/10.1145/1435417.1435432

[30] Haifeng Yu. 2000. Design and evaluation of a continuous consistency
model for replicated services. In Fourth Symposium on Operating Sys-
tems Design and Implementation (OSDI 2000).

https://foursquare.com/city-guide
https://foursquare.com/city-guide
https://developers.google.com/nearby
https://pokemongolive.com/
https://www.influxdata.com/
http://arxiv.org/abs/1805.06989
http://arxiv.org/abs/1805.06989
https://doi.org/10.14778/2536360.2536366
https://rethinkdb.com/docs/architecture/
https://rethinkdb.com/docs/architecture/
https://telegram.org/blog/contacts-local-groups
https://telegram.org/blog/contacts-local-groups
https://doi.org/10.1145/1435417.1435432

	Abstract
	1 Introduction
	2 Related Work and Background
	3 FocusDB Architecture and Overview
	4 FocusDB Data Model
	5 FocusDB Components
	6 Use Case Application
	7 Evaluation
	8 Conclusion and Future Work
	Acknowledgments
	References

