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Abstract

Unstructured peer-to-peer overlay networks are very resilient to churn and topology changes, while requiring
little maintenance cost. Therefore, they are an infrastructure to build highly scalable large-scale services in
dynamic networks. Typically, the overlay topology is defined by a peer sampling service that aims at maintaining,
in each process, a random partial view of peers in the system. The resulting random unstructured topology is
suboptimal when a specific performance metric is considered. On the other hand, structured approaches (for
instance, a spanning tree) may optimize a given target performance metric but are highly fragile. In fact, the
cost for maintaining structures with strong constraints may easily become prohibitive in highly dynamic networks.
This chapter discusses different techniques that aim at combining the advantages of unstructured and structured
networks. Namely we focus on two distinct approaches, one based on optimizing the overlay and another based
on optimizing the gossip mechanism itself.

The original publication is available at www.springerlink.com
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1 Introduction

Gossip, or epidemic, protocols have emerged as a highly scalable and resilient peer-to-peer approach to im-
plement several application level services such as reliable multicast [1, 2, 3, 4, 5, 6, 7], data aggregation [8],
publish-subscribe [9], among others [10, 11, 12]. This chapter addresses peer-to-peer communication support for
reliable and scalable information dissemination. A gossip-based broadcast protocol usually operates as follows:
to broadcast a message, a node selects t nodes at random from the system (t is a configuration parameter called
fanout) and sends the message to them. Upon the reception of a message for the first time, each node simply
repeats this procedure.

The gossip approach to data dissemination has several advantages: i) it is simple to implement, ii) it shares
the load evenly across all nodes in the system, making gossip protocols highly scalable, in fact the load imposed
by the process in each node of the systems only has to grow logarithmically with the size of the system in order
to ensure atomic broadcast with a high probability [1, 13], and finally, iii) its inherent redundancy makes gossip
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protocols highly resilient to node and link failures (for instance, [5] proposes a gossip-based broadcast protocol
that can maintain high resilience even in scenarios where 80% of the nodes in the system fail simultaneously).

Gossip-based protocols were originally designed to operate with full membership information [14, 1], by main-
taining locally at each node a list with the identifiers of every other node in the system (typically, an identifier is
a tuple (ip, port) that allows a node to be reached). However, such approach is not scalable, not only due to the
large size of the membership but also (and mainly) due to the cost of maintaining such information up-to-date in
dynamic systems. For scalability, nodes may rely on a peer sampling service [15, 16, 17, 5], provided by a mem-
bership protocol that operates with the goal of maintaining locally, at each node, a small random subset (called
a partial view) of the full membership list. In this case, nodes use their local partial views to select peers for
exchanging messages.

Partial views establish neighboring associations among nodes that define an overlay network which can be
used for gossiping data. Ideally, the selection of peers from local partial views should be equivalent to a ran-
dom selection of peers across the full membership. Therefore, the resulting overlay has a random (unstructured)
topology.

Although this randomness has some desirable features, it also raises two distinct problems that may impair the
efficiency of applications and protocols that operate on top of these unstructured overlay networks. First, it prevents
the underlying network topology to be taken into consideration by the peer sampling service. This problem is
known as topology mismatch [18]: it usually leads to scenarios where many overlay links are suboptimal with
regard to a given network efficiency criteria such as bandwidth or latency. Second, because the overlay structure
is random, it fails to exploit the natural heterogeneity [19] of large-scale peer-to-peer systems, and does not take
advantage of nodes and links that have a higher capacity.

Node heterogeneity is easier to take into account in structured multicast protocols, by explicitly building dis-
semination structures according to a predefined efficiency criteria [20, 21, 22, 23], and then use these structures
(such as spanning trees [24, 25]) to disseminate multiple messages. In a structured approach, nodes with higher
resource availability can offer a bigger contribution to the global dissemination effort by having larger degrees or
by being placed closer to the root of the tree (the reader should notice that nodes located at the leaves of the tree
are not required to contribute to the message dissemination effort).

The trade-off between gossip-based and structured approaches is clear: By avoiding the need to build and
maintain a spanning tree, epidemic multicast provides extreme simplicity. Moreover the balanced load across all
nodes in the system, is a key factor to achieve resilience and scalability. On the other hand, structured multicast
provides better resource usage (and thus higher performance when the network is stable) by optimizing the cost
of the spanning tree according to efficiency criteria such as network bandwidth and latency. However, structured
approaches have to deal with the complexity of rebuilding the structure when faults or network reconfiguration
occurs.

In this chapter, we address techniques that aim at combining the best of both approaches, namely, the simplicity,
scalability and resilience of unstructured overlay networks with the performance of structured approaches. In
order to achieve this, some degree of structure is added to low-cost unstructured overlay networks to improve their
performance without impairing the relevant properties of unstructured approaches. We start by presenting a survey
of several existing works that aim at improving the topology of unstructured overlay networks. This is followed
by a description of key properties of unstructured overlay networks that should be preserved when introducing
structure. Then we introduce two approaches that can be used to introduce structure in unstructured overlay
networks. The first approach bias the topology of an unstructured overlay according to some performance metric
without compromising the resilience of the overlay. The second is based on an emergent behavior, approximating
the operation of a structured overlay on top of an unstructured overlay. We present a performance evaluation of
both approaches.
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2 Adding Structure to Unstructured Overlay Networks

In this section we survey several existing protocols that can be used to add structure to, or improve the locality
properties of, unstructured overlay networks. Then we list some key properties of unstructured overlay networks
We also enumerate some relevant metrics that can be used to evaluate the benefits of adding structure to unstruc-
tured overlays. Finally we identify two distinct methodologies that allow to add some degree of structure to such
overlays.

2.1 Existing Protocols

2.1.1 Narada

Narada [24] is a protocol designed to support application-level multicast. Narada aims at minimizing the overhead
introduced by implementing multicast at the application layer (as opposed to IP multicast). Namely, Narada aims
at minimizing both the stress induced on physical links (due to duplicate packets that transverse the same links)
and the end-to-end latency of the multicast process. To address these issues, Narada is based on an unstructured
overlay network, whose topology is adapted for improved performance. The goal of the protocol is to build an
overlay that is: self-organizing, efficient, self-improving, and adaptive to network dynamics. We now briefly
describe how the topology of the unstructured overlay is adapted.

Since Narada is targeted at small and medium sized systems, it is assumed that each node has access to a full
membership list containing node identifiers for all participants in their algorithm. Using this information, Narada
builds a limited degree unstructured overlay network, named a richly connected mesh. The overlay network
topology is biased to obtain a majority of low cost links. On top of the resulting unstructured overlay network, a
distance vector routing algorithm is executed to build, and maintain, a spanning tree routed at each sender for each
multicast group. Each node will therefore maintain a local routing table which is used to disseminate multicast
messages.

When a new element joins the system, it contacts a peer already present in the network to obtain the current
full membership list. The node then randomly selects a few group members to whom it sends a join message,
requesting to be added as their neighbor in the overlay. Nodes rely in the resulting unstructured overlay network to
exchange periodic messages which are used to update global membership information, and to detect failed nodes
and partitions.

After the execution of the steps described above, nodes form a fully connected unstructured overlay network.
However, links in the network have a high probability to be suboptimal for a given set of target efficiency criteria.
To improve the overlay, nodes capture information about their execution environment. For instance, in video
conferencing applications, the overlay is biased to improve both point-to-point latency and bandwidth. Passive
monitoring techniques are used to obtain available bandwidth values for peers in the system. Active monitoring
techniques based in the exchange of ping messages are used to extrapolate values for latency. This information is
then used in heuristics which bias the overlay topology as follows:

Add links Periodically, each node n selects another random non-neighbor node p and performs measurements to
assess the efficiency of the communication with p. Also, p sends back to n a copy of its local multicast
routing table. Node n uses both the received information and the expected efficiency of the link between n
and p to locally compute a utility function that evaluates the gain of adding such link to the overlay. If the
expected gain is above a given threshold value, n will add the link between himself and p to the overlay.

Remove links Periodically, each node selects, and removes, the (local) link with the lowest utility value. The
computation of these utility values is done in such a way that the resulting value is an overestimate of the
real utility of the link. Moreover, the link is only removed if its utility falls bellow a given threshold value.

3



This is done to ensure some stability in the overlay. Notice that because the network is dynamic, the utility
of a link may also be dynamic. It would not be efficient to allow situations where one is constantly removing
and adding the same link to the overlay.

Using this methodology, the unstructured overlay topology can be biased, increasing the efficiency of applica-
tions that operate above it.

2.1.2 Localiser

The Localiser algorithm [26] aims at solving the network mismatch problem while ensuring that the overlay net-
work remains connected despite failure of large percentage of nodes. It also ensures a fair degree distribution
among every peer in the system. The localiser algorithm is fully decentralized and only relies in local knowl-
edge. In [26] the authors show the impact of the algorithm on the operation of the unstructured overlay network
maintained by the Scamp protocol [16].

The goal of Localiser is to bias the topology of the overlay network such that the majority of neighbors kept by
each node are “close” peers (given a “network distance” criterion). The protocol also aims at biasing the original
overlay such that every node has the same amount of neighbors, which also contributes to increase the failure
resilience of the overlay.

Localiser was designed based on a metropolis model [27]. This is an iterative model in which an utility function
f is minimized. In order to do this, on each iteration, the utility of the current overlay configuration c is compared
with the utility of a possible alternative configuration c′. The algorithm is probabilistic given that the acceptance
of an adaptation of the overlay configuration from c to c′ is determined by a decreasing probability function in
f (c′)− f (c). The reader should notice that this approach allows to perform adaptations to the overlay topology
which increase the value of the function f . This however is required by the algorithm to avoid local minima
configurations.

The specific algorithm is based on a periodic operation executed by every node in the system. In each iteration,
each node n executes the following steps:

1. Node n selects at random 2 overlay neighbors p1 and p2 and computes for each one a local cost function.

2. Node n obtains the node degree of p1 and p2. Furthermore it also obtains from p1 the cost of the link
between p1 and p2.

3. Node n locally computes the global benefit of exchanging its link with p1 for a link between p1 and p2.

4. Finally, node n uses a probabilistic function, which takes into account the benefit, the expected cost of the
adaptation, and node degree, to make the decision of applying, or not, the link exchange. If the exchange is
accepted, n coordinates with p1 and p2 the steps required to perform the adaptation.

The algorithm can be parameterized to give more weight, in the probability function, to the balance of node
degrees or to the proximity of neighbors (notice that this proximity notion is encoded in the link cost function).
The probability function can also be tuned to promote maintenance of low cost configurations or to increase the
probability of a faster convergence.

This scheme allows an unstructured overlay to self adapt to reach a configuration where most neighbors are
“local” (i.e., with a small link cost) while at the same time, improving the degree distribution. This leads to more
efficient overlay configurations with increased resilience to faults.
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2.1.3 Araneola

Araneola [28] is a protocol for reliable and efficient multicast based on unstructured overlay networks. The pro-
tocol is able to build, and maintain, a bounded degree overlay. Moreover, Araneola, includes a mechanism for
exploiting network proximity in the overlay.

This mechanism operates independently of the main task of the Araneola protocol. It operates by adding new
links to the overlay to promote communication between close peers. The proposed extension to the original
protocol is based on two distinct components, namely: a task to locate nearby peers, and another task which
establish connections with discovered nearby peers. These tasks operate as follows:

Locating nearby nodes The task operates by capturing network performance values from peers selected from a
local partial view. The performance values are used to sort nodes into a candidate list which is then used
by the second task. Several techniques can be employed to capture performance values (different metrics
require different techniques). For instance, the authors of [28] rely on a network-level hop-count between
peers which is extracted using the UNIX tracepath utility (aiming at lowering point-to-point latency in the
network).

Connecting to nearby nodes This task tries to maintain a number of nearby neighbors equal to a target value NB
(NB is a protocol parameter). Periodically, if the number of nearby neighbors of a node falls bellow the
target value, the node issues a CONNECT NEARBY request to the first peer in its candidate list (the list
generated by the previously described component). A node which receives a CONNECT NEARBY mes-
sage will accept the connection, and add the issuing node to its nearby neighbors set, if it has a number of
nearby neighbors below NB. If the node accepts the request it replies with a CONNECT OK NEARBY.
Upon the reception of a CONNECT OK NEARBY the receiving node adds the sender to its nearby neigh-
bors set, unless the number of its nearby neighbors has reached the target value of NB. In the later case,
the node will send a LEAVE NEARBY message, which will result in the removal of the newly established
connection.

This extension to the original Araneola protocol is able to correlate the topology of the overlay and the topology
of the underlying network. As a result, better links are used in the overlay and the latency of the dissemination
process is decreased.

2.1.4 GoCast

GoCast [29] is a protocol for reliable group communication that operates by building a multicast tree on top of an
unstructured overlay. This overlay network is biased to promote low latency links and a constant degree for all
nodes in the system.

GoCast operates by maintaining both near and random neighbors. The protocol also relies in a peer sampling
service which is used as a bootstrap overlay, and also as a source for random peers for the protocol operation. The
protocol tries to select a sample of Crand and Cnear nodes such that the sum of these numbers converges to a given
value D (all these values are protocol parameters). TCP connections are maintained for every neighbor of each
node, and all communication made between such peers is done by relying in these connections. UDP is used for
communication for all remaining nodes (for instance, to obtain latency measurements).

Periodically every node in the system performs two operations; the first to maintain random neighbors and the
second to maintain a nearby neighbors. We now describe these operations.

Maintaining random neighbors To this purpose, each node p compares its current number of random neighbors
with the target value: Crand . If these values are equal, no operation is required. If the number of random
neighbors is below the target value, then the node adds a random node (obtained from the peer sampling
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service) to its neighbors set, and establishes a TCP connection to it. Finally, if the number of random
neighbors is above Crand , the node p might take one of the following corrective measures:

• If the current number of ps random neighbors is equal or above Crand + 2, p selects two random
neighbors, q and r, and asks them to replace their links with p for a link between q and r. This allows
to reduce by 2 the number of random neighbors of node p, while preserving the number of random
links for all remaining nodes in the system.

• If one of ps random neighbors, q, has a number of random neighbors above Crand , p simply asks q
to remove the link between them. This allows for two nodes, in a single step, to approximate their
number of random neighbors to the target value of Crand .

Maintaining nearby neighbors GoCast mechanism to maintain nearby neighbors is composed of three sub pro-
tocols. The first serves to replace nearby neighbors for other nearby neighbors with a lower latency. The
second is used to add nearby neighbors to the partial view of the node, when the number of nearby neighbors
is bellow the target value of Cnear. Finally, there is a protocol to remove nearby neighbors when their number
is equal or above Cnear +2.

• Periodically, a node p, measures its latency to a random peer, say r. If the estimated latency to r is
lower than an existing nearby neighbor n, p might exchange its link with n for a link with r if and only
if the following four conditions are true: i) the number of nearby neighbors of n must at least Cnear−1;
ii) the number of nearby neighbors of r must be below Cnear +5; iii) if the number of nearby neighbors
of r is above Cnear, then r must have a nearby neighbor with a higher latency than the estimated latency
value between p and r and finally, iv) to ensure that there is a relevant gain in the link exchange, the
latency between p and r must be at least, half of the latency between p and n.

• In order to add new nearby neighbors, p selects a random peer r and simply adds it as his neighbor if,
and only if, the conditions ii and iii depicted above, are true.

• If node p has a number of nearby neighbors equal or above Cnear +2 it drops the connection to a nearby
neighbor which does not have a number of nearby neighbors below the threshold of Cnear−1.

GoCast can successfully bias an unstructured overlay network to improve its performance, reducing the overall
latency, and also converge to a configuration where all nodes have a degree value between D−2 and D+2.

2.1.5 T-Man

T-Man [30] is a generic topology management scheme for unstructured overlay networks. The goal of the protocol
is to reach a given target topology from a pure random overlay. Examples of target topologies are torus, ring, or
some user defined topology. The topology is defined by fixed size partial views that are maintained at each node
(the size c of these partial views is a protocol parameter).

The protocol relies on a ranking function that, at any give node, is able to sort a set of peers accordingly to
some preference. The ranking function must be able to encode, somehow, the desired topology, in the sense that
it must be able to provide clues, for every node, concerning the most relevant peers that they should keep as
neighbors, in order to generate the desired topology. The operation of the protocol is based on a periodic exchange
of information performed by every node, which works as follows:

1. A given node n starts by using the ranking function to select the neighbor p that is closer to itself;
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2. then n sends to p a set of peers containing n’s identifier, n’s partial view, and a random sample of other peers
in the system1;

3. when p receives this information from n it replies with a similar set of peers: p’s identifier, p’s partial view,
and a random sample of other nodes in the system ;

4. after this exchanged is performed, both nodes use a merge function which also relies in the ranking function
to return the c best peers from the union of each node partial view and the received set of peers;

5. each node partial view is then updated to contain the c nodes returned by the local execution of the merge
function.

This protocol allows the overlay network to converge for the desired topology. Because nodes exchange infor-
mation with their closest peers, the probability of receiving information concerning other peers which are good
candidates to improve the overlay topology is increased, as there is a high probability that nearby nodes will be
trying to converge their partial views to contain similar peers.

2.1.6 Plumtree

The Plumtree protocol [25] is a dissemination scheme which relies on a reactive unstructured overlay network to
embed a highly resilient low cost spanning tree. The protocol uses this spanning tree to bias the communication
pattern of a gossip-based broadcast protocol, in order to lower the inherent overhead of the gossip protocol, without
impairing its reliability. To do this, eager push is used in overlay links which belong to the spanning tree while, for
both fault-tolerance and support the healing mechanism of the spanning tree, lazy push is used on the remaining
overlay links.

The protocol has two main components. The first builds the spanning tree structure by removing redundant
links when they exist. The second component is able to heal the spanning tree structure whenever a node fails
or leaves the system, and also recover from message loses due to membership dynamics. We now describe the
behavior of each component:

Building the spanning tree Initially, Plumtree assumes that every link in the overlay belongs to the spanning tree.
The same is true whenever a new link is added to the overlay due to natural dynamics in the peer-to-peer
system. When a link is used to transmit a redundant gossip message, the protocol removes that link from
the spanning tree. Therefore, when the first broadcast message is disseminated, it is eagerly flooded through
the overlay. However, when the dissemination process is concluded, the spanning tree has been completely
established, and following broadcast messages are only eagerly transmitted in the links which belong to the
tree.

Healing the spanning tree In the presence of node failures the spanning tree may become disconnected. This
results in poor reliability, as disconnected nodes will miss broadcast messages. To address this, nodes also
send lazy push messages through the remaining links of the overlay (e.g. links which are not part of the
spanning tree). Messages transmitted by lazy push only carry an unique identifier for broadcast messages
and omit the original payload, therefore these messages are in fact announcement messages that a new
broadcast message (or messages, as more than one message identifier can be carried in a single IP packet)
is available.

When a node receives an announcement for a given broadcast message that it has not received yet, it starts
a timer. When the timer expires, if the payload is not yet locally available, the node request the payload

1This random sample can usually be extracted from an out-of-band peer sampling service such as Cyclon [17] or HyParView [5].
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to the neighbor who sent the announcement. This message implicitly adds the link to that neighbor to the
spanning tree, effectively healing the tree.

After a failure, several nodes may concurrently add links to the spanning tree; this may result in the creation
of redundant links. However, the mechanism for building the tree will detect such redundancy during the
dissemination of the next broadcast message and, as result, will prune existing redundant links (if any).

This protocol is completely decentralized, and by using two distinct transmission modes (eager and lazy push)
it can lower the overhead of disseminating broadcast messages to a value comparable to some multicast structured
solutions. The use of lazy push ensures, at a low cost, that the natural resilience of gossip protocols is maintained.
Also, as a result of the strategy used to select links, links that form spanning tree are those with lower latency.

2.2 Key Properties to Preserve

In the previous paragraphs, we have surveyed a number of protocols to optimize the overlay network to achieve
better performance. There are however a number of key topology properties2 that should be preserved during the
optimization, as listed below:

Connectivity The overlay is connected if there is at least one path that allows every node to reach every other node
in the overlay. The overlay should remain connected despite failures that might occur. If this requirement is
not meet, isolated nodes will not receive broadcast messages.

Degree Distribution The degree of a node is the number of edges of a node, or in other words, the number of
neighbors that a given node has3. The degree of a node is both a measure of its reachability on the overlay
and also a measure of its contribution to maintain the overlay connected. If the probability of failure is
uniformly distributed in the node space, for improved fault-tolerance, all nodes should have the same degree
value. Nodes that have a small degree will more easily become disconnected from the overlay as the number
of faults increases. On the other hand, the failure of nodes with high degree may have an undesired impact
in the overall connectivity of the overlay.

Average Path Length A path between two nodes in the overlay is a set of edges that connect one node to the
other. We define the average path length as the average of all shortest paths between all pair of nodes in the
overlay. The average path length is closely related to the overlay diameter. To promote the overlay efficiency
when broadcasting messages, the average path length between nodes should be as small as possible. Large
values of average path length have two negative implications: i) The number of hops required for messages
to reach all nodes increases, with a negative impact in the broadcast latency and, ii) the broadcast process
becomes more prone to failures, as the time window for failures increases (e.g. the number of steps required
to fully disseminate a message increases).

Clustering Coefficient The clustering coefficient of a node is the number of edges between that node’s neighbors
divided by the maximum possible number of edges across those neighbors. The clustering coefficient cap-
tures a density of neighbor relations across the neighbors of a given node, having it’s value between 0 and 1.
The clustering coefficient of a graph is the average of clustering coefficients across all nodes. The clustering
coefficient of an unstructured overlay should be as small as possible, and failure to meet this requirement

2Some of these properties are intrinsically related with graph properties, as it is, an overlay network can be seen as a graph, where
nodes are represented by vertex, and links, or neighboring relations, are represented by edges. Depending on the nature of these relations,
graphs can be directed or undirected.

3To be precise, usually partial views establish asymmetric neighboring relations, therefore the degree is viewed as two distinct compo-
nents: in-degree and out-degree. However, in this chapter we will mostly focus on systems which use a gossip-based membership protocol
which offers to nodes access to symmetric partial views therefore, we do not consider these components as being distinct.
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has the following negative implications: i) the number of redundant messages received by nodes when dis-
seminating data increases, especially in the first steps of the dissemination process; ii) the diameter of the
overlay increases, which in turn will make the average path length increase, and finally iii) it decreases the
fault resilience of the overlay, as areas of the overlay which exhibit a high value of clustering can more
easily became disconnected.

The interested reader can find a more detailed discussion of these and other properties of random overlays in [5]
and [31].

2.3 Performance Metrics

Several metrics can be used to measure the performance of a gossip-based broadcast protocol operating on top
of a random overlay network. In this chapter we focus mainly on offering high dependability for applications
requiring reliable broadcast. Therefore, the metrics that we present here are mostly related with the operation of
broadcast protocols, as we specifically aim at biasing the overlay topology to minimize the message dissemination
overhead, while preserving the typical reliability of gossip-based broadcast protocols.

Average Link Cost We assume that each link of the overlay may be tagged with a cost. Costs may be associated
to a concrete (underlay) network metric such as link latency. However, the link cost may also be associated
to higher level utility metrics; for instance, in a file sharing peer-to-peer system it could be a measure of the
semantic similarity between the data stored at the edges of a link.

Reliability Gossip reliability is defined as the percentage of correct nodes that deliver a given broadcast message.
A reliability of 100% means that the protocol was able to deliver a given message to all active nodes or, in
other words, that the message resulted in an atomic broadcast as defined in [2].

Latency We define latency of a gossip-based broadcast protocol as the time between the instant when a message is
transmitted by its original sender, to the moment when the last peer, which receives the broadcast message,
delivers it to the application layer. The reader should notice that one can have good latency values by failing
to deliver the message to a large number of nodes. Therefore the goal of a gossip-based broadcast protocol
should be to achieve a low latency value while ensuring a high reliability. Moreover, latency values are only
comparable between broadcast protocols that exhibit a similar reliability value, for systems composed of the
same number of nodes.

Last Delivery Hop The Last Delivery Hop measures the number of hops required to deliver a broadcast message
to all recipients. When a message is gossiped for the first time, its hop count is set to 1 and, each time it
is relayed in the overlay, the hop count is increased in one unit. The last delivery hop is the hop count of
the last delivery for a given broadcast message or, in other words, is the maximum number of hops that a
message must be forwarded in the overlay before it is delivered to all participants. This metric is closely
related with the diameter of the overlay and with the the latency of a gossip protocol. In other words, it can
be seen as an efficiency metric.

2.4 Methodologies

We can distinguish two main methodologies that allow to introduce some degree of structure in unstructured
overlay networks. These methodologies operate at distinct levels:

Overlay Optimization This methodology consists in manipulating the neighboring relations among peers, effec-
tively changing the unstructured overlay network topology and changing the communication patterns among
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peers (e.g. by changing the communication peers for each node). This methodology aims at improving the
overall overlay network, which is the support for several gossip protocols, by replacing existing links be-
tween peers for alternative links which present a better performance given an efficiency criteria (e.g such as
latency). In Sect. 3 we describe with some detail a protocol based on this approach.

Gossip Optimization This methodology consists in selecting different communication modes for transmitting
messages between different peers. The possible modes to transmit messages are: eager push, lazy push
and pull [25]. This methodology supports the emergence of structure, from the unstructured overlay, by
establishing patterns in the communication modes used among peers. Protocols based on this approach
are able to: i) make a better usage of network resources; ii) reduce the communication overhead of gossip
protocols and also, iii) address heterogeneity of nodes. In Sect. 4 we describe a protocol which employs this
technique. Another protocol which also uses this methodology can be found in [25].

The first technique is used in a larger number of proposed solutions. Protocols such as Narada, Localiser,
Araneola, GoCast and T-Man use variants of overlay optimization to bias, or adapt, the topology of random
overlay networks. The second technique has only recently been proposed (the protocol presented in Sect. 4 and
Plumtree are two of the few protocols employing this technique).

3 Overlay Optimization

3.1 Overview

In this section, we describe a protocol to Bias the Overlay Topology according to some target efficiency criteria
X, or simply X-BOT. A target efficiency criteria can be, for instance, to better match the topology of the underlying
network. However, in X-BOT, biasing the overlay is done without compromising key properties of random overlay
networks (such as the node degree, small diameter, and low clustering coefficient), which are essential to ensure
the efficiency and reliability of some peer-to-peer applications such as, gossip-based broadcast protocols.

X-BOT relies on the combined use of two distinct partial views, inspired by HyParView [5], a gossip-based
membership protocol that illustrated how to achieve a high resilience to faults (as high as 80% of simultaneous
nodes failures) in a gossip-based broadcast protocol using a low fanout value. The architecture of this protocol
is based in the combination of a small sized active view and a larger passive view. X-BOT relies on a similar
architecture in order to optimize the overlay network used for message dissemination.

The goal of the protocol is to reduce, as much as possible, the average link cost of the overlay network defined
by the active views. For that purpose, X-BOT actively bias the neighbors in the active view using random peers
extracted from the larger passive view. This is feasible because only the active view is used for communication
among peers. Moreover, the passive view is maintained by a cyclic strategy [5] which ensures that the contents
of this view are periodically updated and therefore, gives access to an increasing number of potential neighbors
over time to each node. X-BOT is flexible allowing to bias a topology for different criteria such as, link latency
or content similarity as a result of being independent of the cost function. The protocol only requires costs to be
comparable and totally ordered.

3.2 Architecture

X-BOT maintains two distinct, and disjoint, partial views: a small sized symmetric active view and a larger
cyclic passive view. As in HyParView, the active view is used mainly for communication among peers and TCP
connections are maintained to neighbors in this view.

X-BOT assumes that all nodes have access to a local Oracle. Oracles are components that export a getLinkCost(Peer
p) interface, which returns the link cost between the invoking node and the given target node p in the system (since
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there is a single link to each neighbor, in this chapter we use interchangeably link cost or node cost when referring
to the output of the Oracle). The implementation of such Oracles are not discussed in the chapter. However, for
completeness, we provide a brief description of three simple Oracles.

3.2.1 Oracles

Latency Oracle This Oracle operates by measuring round trip times (RTT) to peers. This can be performed by
exchanging probe messages with Oracles located at other nodes4. The Oracle must be aware of the peers
which are known at the local host, and it slowly measures the RTT for each know node (this value can be
directly used as the cost value).

Internet Service Provider Oracle In a setting where exchanging messages across different ISPs has an increased
monetary cost, it might be useful to keep as many neighbors as possible that share the same ISP. Such Oracle
can be built by maintaining information concerning the local ISP and a table of costs for each known ISP.
When the Oracle becomes aware of a new peer, it simply exchanges local ISP information with the remote
Oracle and asserts the cost for the link using the local cost table.

IP-based Oracle X-BOT can also leverage on previous work addressing the use of inexpensive Oracles that do not
require the exchange of control information [32, 33]. Such Oracles are able to calculate neighbor proximity
values, which can be used as cost, using IP aggregation information (for instance, using a match of common
IP prefixes to calculate a measure of proximity between two peers).

Oracles are not required to be perfect for the operation of the protocol, in the sense that provided costs are not
required to be 100% accurate. The interested reader can refer to [34] for experimental results that show the effect
of unreliable Oracles in the protocol.

3.2.2 Rationale

The rationale of X-BOT is as follows. As in HyParView X-BOT maintains a small active view and a larger passive
view. However, unlike HyParView, that strives to ensure the stability of the overlay, X-BOT relaxes stability to
be able to continuously improve the overlay. This allows the topology of the unstructured overlay to self adapt to
better match the requirements of the application executed on top of it. Periodically, each node starts an optimization
round in which it attempts to switch one member of its active view for one (better) neighbor of its passive view. In
the optimization protocol, a node uses its local Oracle to obtain an estimate of the link cost to some random selected
peers of its passive view. The number of nodes π for which the cost is measured in each optimization round is
a protocol parameter called Passive Scan Length. This parameter limits the maximum number of optimization
exchanges started by each node each time it runs the optimization procedure. Similarly to the original HyParView
protocol, the passive view is not biased.

X-BOT strives to preserve the connectivity of the overlay. This has two implications: i) nodes only make an
effort to optimize their active views when they have a full active view (i.e., no bias is applied to active views until
connectivity of the nodes is ensured). Furthermore, each node attempts to maintain some unbiased neighbors,
as we explain in the next section; ii) we try to preserve the degree of nodes that participate in a optimization
procedure, given that the node degree has a significant impact on the connectivity of the overlay. To ensure this,
each optimization round involves typically 4 nodes in the system as we describe later in the text.

4Probe messages can also be piggybacked on application traffic, for instance, when measuring the cost for peers in the active view.
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Figure 1. Steps of the optimization protocol

3.2.3 Unbiased Neighbors

By blindingly imposing a bias in the topology of the overlay, one may easily break some of the desirable key
properties of a random overlay, such as the low clustering coefficient, low average path length, or connectivity [29].
The negative effect of such bias can be even more notorious in the architecture of X-BOT, that relies on small
partial views. To avoid this flaw, X-BOT does not bias all members of the active view. Instead, each node
maintains both “high-cost” (unbiased) and “low-cost” (biased) neighbors. The number of unbiased neighbors
each node keeps is a protocol parameter called Unbiased Neighbors and simply denoted µ .

Unfortunately, it is not trivial to decide which peers have a “high-cost”, given that nodes are not expected to have
global knowledge of the system, not only regarding membership information but also regarding global metrics,
such as the average link cost in the overlay. To circumvent this limitation, X-BOT maintains the active views of
each node sorted by link cost, where the first element of each active view is the neighbor with the largest link cost.
Therefore, a node never applies any bias to the first µ members of its active view. Also, whenever a change occurs
in the elements of a node’s active view, the active view is reordered using the same criterion. The same happens if
the cost of a node changes due to modifications in the execution environment.

3.3 Algorithm

In this section we briefly describe the operation of the overlay optimization algorithm (a more detailed descrip-
tion can be found in [34]). The algorithm executed at each optimization round is depicted in Algorithm 1 and
illustrated in Fig. 1. The algorithm listing has been simplified for clarity, for instance, we omitted some insertions
of nodes into passive views and the mechanisms required to ensure the symmetry of active views.

Usually an optimization round involves 4 nodes of the system, and each round is composed of 4 steps, one for
each node that participates in the optimization. The goal of these steps is to exchange two of the existing links in
the overlay for other two links such that the cost of the two added links is lower than the cost of the original links.
To ensure that the overall cost of the overlay is reduced in an optimization round, and because it is assumed that
link costs are symmetric, the optimization scheme only requires that two of the four participating nodes in a round
consult their local Oracles.

A complete optimization round requires the serial exchange of seven messages. However, in most cases, each
node involved in the optimization only has to send and receive at most two messages. Given that the optimization
of the overlay can be executed as a background activity, the cost of the adaptive mechanism can be easily tuned to
become negligible when compared with the (application) data traffic.

Oracles are not required to be perfect, in the sense that they might provide information that is not fully accurate.
Namely, two nodes may obtain different costs for the same link when they consult their local Oracle. For instance,
[33] states that longest IP prefix and latency has an approximate correlation of −0.85. In cases where Oracles are
not perfect, nodes have to make decisions with inaccurate information. Therefore, the isBetter evaluation function
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Algorithm 1: Optimization Procedure
Data:

activeView //fixed size sorted list
passiveView //fixes size list

1: every ∆ T do
2: if isFull(activeView) then
3: candidates←− randomSample(passiveView, π)
4: for i := µ ; i < sizeOf(activeView) ; i :=i + 1
5: o←− activeView[i]
6: while candidates 6= {} do
7: c←− removeFirst(candidates)
8: if isBetter(o,c) then
9: Send(OPTIMIZATION(o, myself),c)
10: break

11: upon Receive(OPTIMIZATION, o, i) do
12: if ¬ isFull(activeView) then
13: activeView←− activeView ∪ {i}
14: Send(OPTIMIZATIONREPLY(true, o, ⊥, myself),i)
15: else
16: d←− activeView[µ]
17: Send(REPLACE(o, i, myself),d)

18: upon Receive(OPTIMIZATIONREPLY,answer,o,d,c) do
19: if answer then
20: if o ∈ activeView do
21: if d 6=⊥ then
22: Send(DISCONNECTWAIT(myself),o)
23: else
24: Send(DISCONNECT(myself),o)
25: activeView←− activeView \{o}
26: passiveView←− passiveView \{c}
27: activeView←− activeView ∪{c}

28: upon Receive(REPLACE, o, i, c) do
29: if ¬ isBetter(c,o) then
30: Send(REPLACEREPLY(false, i, o, myself),c)
31: else
32: Send(SWITCH(i, c, myself),o)

33: upon Receive(REPLACEREPLY,answer,i,o,d) do
34: if answer then
35: activeView←− activeView \{d}
36: activeView←− activeView ∪{i}
37: Send(OPTIMIZATIONREPLY(answer,o,d,myself),i)

38: upon Receive(SWITCH,i,c,d) do
39: if i ∈ activeView or received(DISCONNECTWAIT from i) then
40: Send(DISCONNECTWAIT(myself),i)
41: activeView←− activeView \{i}
42: activeView←− activeView ∪{d}
43: Send(SWITCHREPLY(answer,i,c,myself),d)

34: upon Receive(SWITCHREPLY,answer,i,c,o) do
35: if answer then
46: activeView←− activeView \{c}
47: activeView←− activeView ∪{o}
48: Send(REPLACEREPLY(answer,i,o,myself),c)

49: isBetter(old,new)
50: cOld := Oracle.getLinkCost(old)
51: cNew := Oracle.getLinkCost(new)
52: return cOld > cNew ∧ (cOld − cNew)

cOld ≥ THRESHOLD
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(depicted in Algorithm 1) includes some hysteresis, namely, a given link new is only considered to have a lower
cost than another link old, if the difference between the cost (obtained through the Oracle) offers a gain above a
given Threshold, which is a protocol parameter introduced to address the inaccuracy of Oracles. The threshold
value can be calculated experimentally for each Oracle. This value should be related with medium precision and
error drift of Oracles, which can be measured in a semi-controlled environment such as Planet-lab [35].

3.4 Performance

In the following sections we show performance results of the X-BOT protocol. To better understand the impact
of this approach, which affects the properties of the unstructured overlay network, we used simulation, which
allows us to extract performance metrics in a system composed of a large (10.000) number of nodes.

3.4.1 Experimental Setting

The figures presented are the result of extensive experimental evaluation of this approach in the PeerSim simu-
lator [36] using its cycle based engine. Each cycle is a virtual time slice where each node can execute periodic
operations. Additionally, a single broadcast message is also disseminated in each cycle to enable the observa-
tion of the reliability of a gossip-based broadcast protocol operating on top of biased unstructured overlays. All
experiments were conducted in a system composed of 10.000 nodes. Simulation were run on top of a network
model composed of 13.037 routers generated by Inet-3.0 [37] with its default parameters. In order to calculate
the cost between neighbors, we calculated the shortest paths in the underlying network among the 10.000 overlay
nodes. The cost between two nodes is the sum of the pseudo geographical distance, generated by Inet-3.0, of links
between the routers that form shortest paths. All results report an average extracted from 5 independent runs. Each
one of these runs used one of 5 distinct random network topologies generated using the methodology described
above.

Simulations use the configuration parameters for HyParView reported in [5]. The most relevant configuration
parameters are the active view size, which was set to 5 and the passive view size, which was set to 30. Different
Unbiased Neighbors values (µ) ranging from 0 to 5 (all) were tested; the last configuration corresponds to the
operation of the original HyParView protocol (given that no bias is applied to any member). Moreover, in all
simulations we used the following parameters:

The period between optimizations was set to 2 simulation cycles. In each simulation cycle each node initiates an
exchange with a random peer in the overlay, which results in the update of both nodes passive views. Moreover, in
average, a node will also participate in an exchange initiated by other peer. Therefore, setting the period between
optimization to two cycles ensures that, between executions of optimization steps the passive view of nodes is
updated, increasing the possibility of selecting new nodes that can be used to improve the active view of the node.

Passive Scan Length (π) was set to 2, so each time a node executes the step 1 of the optimization algorithm, it
measures, at most, 2 nodes from its passive view. This also limits the number of nodes which are replaced in the
active view of any given node in a single round as 2. Setting π to a small value allows to achieve two goals: i) It
promotes some stability in the overlay, as we avoid to exchange the majority of nodes in the active view of a single
node in the context of a single optimization execution.; ii) It lowers the cost of the overall optimization process.

3.4.2 Stable Environment

First, X-BOT performance results are shown for a stable environment, where no failures were induced. Simulations
were run for 250 cycles. Nodes were added to the overlay using the Join mechanism provided by the HyParView
protocol as described in [31] and had access to local perfect Oracles (e.g. their precision was of 100%).

Overlay Properties. Figure 2 shows the average link cost of the overlay as the system evolves. As expected, while
the original HyParView protocol (µ = 5) shows a constant link cost in steady state, X-BOT, is able to lower its
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Figure 2. Average Link Cost

average link cost from approximately 5% while maintaining 4 unbiased neighbors to 25% when keeping 1 unbiased
neighbor or even 32% when no unbiased member is maintained in the active view. Notice also that, although the
optimization process works continuously, 50 simulation cycles is enough to obtain a visible improvement in the
average link cost.

Figure 3 depicts results for clustering coefficient. As expected, if the bias is applied to all members of the
active view the clustering coefficient of the overlay increases. On the other hand, maintaining a single unbiased
neighbor is enough to partially mitigate this effect. However, as it can be observed after 250 simulation cycles, the
clustering coefficient of the network with a single unbiased member is still above that of the original HyParView
protocol. Interestingly, when 2 to 4 unbiased neighbors are maintained in the active view, the clustering coefficient
drops to values below those obtained with 5 random neighbors. This phenomenon can be explained as follows:
By maintaining active views sorted by cost, the selected unbiased neighbors are those with a larger cost known by
each node during the lifetime of the system. In other words, X-BOT with no extra cost, promotes the maintenance
of “long distance” links in each active view. The same effect is also visible in Fig. 4 where we show the average
path length values.

Broadcast Reliability. Experiments were also conducted to assert the impact in the reliability of a gossip-based
broadcast protocol operating on top of a biased overlays resulting from the operation of X-BOT. Experiments
were conducted as follows: in each simulation cycle, we select a random node in the system to broadcast a
message. After the dissemination process is complete, we evaluate the reliability of the broadcast by observing the
percentage of active nodes that receive that message. The reliability obtained for all configurations of the protocol
was of 100% in steady state. This shows that the overlay maintained by the protocol did not became disconnect
due to the operation of X-BOT.

Effect of Node Clustering. In order to illustrate some of the benefits of X-BOT, the algorithm was compared
with T-Man in a scenario where nodes are highly clustered in the cost function space. Notice that in these scenarios
the optimization of the overlay can lead to the creation of disconnected clusters.

The experiment was conducted using a version of T-Man [38] for the PeerSim simulator, which can use the same
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Figure 3. Clustering Coefficient

Oracles as X-BOT. The selection of this version of T-Man was motivated by an additional parameter k present in
the protocol which is similar to the µ parameter of X-BOT. The parameter limits the biasing the protocol performs
over nodes partial views to c− k neighbors. The remaining k neighbors of each node are selected at random.

The experiment was designed as follows: It starts by positioning 1024 nodes in two spatial clusters. Then
HyParView is used to build an overlay connecting these nodes. The resulting overlay is depicted in Figure 5(a)
where each node is represented by a cross, and each overlay link is represent by a line. As the reader can observe,
the overlay is highly connected.

Then X-BOT, with µ set to 1, and T-Man, with k set also to 1, are executed for 250 simulation cycles to optimize
the distance between neighbors, resulting in the topologies depicted, respectively, in Figure 5(b) and Figure 5(c).
As expected, X-BOT replaces a large number of links between the two clusters by better links inside each cluster.
However both clusters are still highly connected. The same is not true for T-Man, which breaks the connectivity
between the two clusters. This happens because the random selection of nodes in T-Man is implicitly biased to
nodes that are, at most, at two hops of distance whereas X-BOT extracts distant neighbors from an unbiased low
cost passive view. Moreover, as described earlier, X-BOT (unlike T-Man) promoted the maintenance of long cost
links in the overlay which, is such scenarios, is essential to ensure the global connectivity of the overlay.

3.4.3 Massive Failures

In this section we provide results concerning the reliability of the gossip-based broadcast protocol on top of the
optimized overlay network. Specifically, after the induction of massive node failures in the system that range from
10% to 95% of all nodes. These faults were induced in the system after 250 cycles of simulation to ensure that
the overlay had time to converge to a biased version. After the induction of failures, simulations were conducted
for an extra 250 cycles and in each cycle a random correct node was selected to initiate the dissemination of a
broadcast message. After the completion of the dissemination process, the reliability of the broadcast protocol
was measured. Figure 6 shows the average reliability obtained while broadcasting 250 messages after massive
failures. The reader should notice that all protocol instances present similar values for reliability. This happens
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Figure 4. Average Path Length

due to the passive view maintained by HyParView. Notice that, although we use passive views across nodes to
bias the topology of the overlay, the properties of the passive view are not affected, thus the healing properties of
passive views are not affected by the operation of X-BOT.

One could expect that maintaining a single unbiased neighbor would decrease the resilience of the overlay to
node failures. In fact, one could imagine that if the unbiased member fails, it would be difficult for this member to
be replaced by another unbiased member. However, X-BOT only attempts to apply some bias when the active view
is complete. Therefore, when a node crashes and needs to be replaced, the replacement is picked at random from
the passive view. This policy, combined with the use of a sorted active view explains the effect that we depicted in
Sect. 3.4.2 in which unbiased neighbors become implicitly biased for high costs.

4 Gossip Optimization

4.1 Overview

In this section we describe a protocol which employs the gossip optimization methodology. This allows the
structure to emerge from the natural operation of a gossip-based broadcast protocol. The approach leverages the
fact that two distinct communications modes between peers may be used, namely: eager push and lazy push.
A main goal of the protocol is to approximate the efficiency of a gossip-based broadcast protocol to that of a
structured broadcast protocol, more specifically, to the efficiency of a dissemination strategy which employs a
spanning tree that covers all peers in the system. Moreover the protocol aims at building a solution that exhibits
the following characteristics:

• Does not impair the natural resilience of gossip protocols.

• Avoids the necessary overhead to explicitly build and maintain the spanning tree structure. Namely, it avoids
the maintenance of additional state for supporting the dissemination structure.
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Figure 5. Our protocol vs T-MAN highly clustered system.

• Uses a decentralized approach, with low requirements in node coordination.

• Optimizes the dissemination process to take node heterogeneity into account in such a way that nodes with
higher capacity can contribute more to the dissemination of messages.

In the following sections we describe, in some detail, the operation of the protocol and how it allows to achieve
the characteristics listed above.

4.1.1 Background

Gossip-based multicast protocols are often based on an eager push gossip approach [3, 7, 12]: A gossip round is
initiated by a node that has received a message, relaying it to a number of targets. However, it is well known that
this strategy consumes a lot of bandwidth, as the fanout required for atomic delivery leads to multiple copies of
each message being delivered to each destination.

A different trade-off can be achieved by using a lazy push strategy, which defers the transmission of the payload.
In detail, during a gossip round a node will send only an advertisement of the new message. Transmission of the
payload is initiated only if the message is unknown to the recipient. This allows the message payload to be
transmitted only once to each destination, at the expense of an additional round-trip. Lazy transmission has also
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Figure 6. Average reliability of 250 messages after failures

an impact on the reliability, as the additional round-trip and resulting increased latency widens the window of
vulnerability to network faults. The impact is however small for realistic omission rates and can be compensated
by a slight increase in the fanout [19]. Even with a larger fanout, one can significantly improve the use of the
network resources namely, in terms of consumed bandwidth.

In fact, one can mix both approaches in a single gossiping round [19], thus providing different latency/bandwidth
trade offs depending on how many messages are eagerly transmitted.

4.1.2 Approach

The architecture stems from the observation that, in an eager push gossip protocol, paths leading to deliveries
of each message implicitly builds a distinct random spanning tree for each broadcasted message. This tree is
composed of links which belong to the overlay network, and therefore, one can say that it is embedded in the un-
derlying random overlay. If one knew beforehand which links are used to transmit messages that lead to deliveries,
one could use eager push gossip for those links and lazy push gossip for all others. This would achieve exactly
once transmission for each destination. Unfortunately, this is not possible, as one cannot predict which paths in
the overlay will lead to message deliveries.

There is however an alternative strategy which is feasible: If one of the embedded trees is selected beforehand
for eager push gossip, one increases the probability that the links which compose that tree lead to an increased
amount of message deliveries. This happens because lazy push has additional latency, and paths that use it will be
outrun by paths that solely rely in eager push. If one assigns nodes and links with higher capacity to support such
spanning tree, the performance of the protocol should approach that of a structured approach, where the tree is
build beforehand, in such a way that it improves one, or more, efficiency criteria. Note that keeping redundant lazy
transmissions is essential to retain the gossip resilience properties. On the other hand, this strategy requires the
explicit coordination among peers to maintain a tree structure which imposes additional overhead and complexity.

Instead of selecting a single embedded tree, gossip optimization aims at increasing the probability of implicitly
creating spanning trees in a gossip protocol to include nodes and links with higher capacity. The resulting struc-
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tures are therefore probabilistic in nature: Nodes and links are selected with different probabilities for payload
transmission (or in other words, for eager push transmissions). Consequently, structure emerges naturally from
the strategy used for scheduling message payloads in a combined eager/lazy push gossip protocol. One of the
main challenges is to achieve an emergent structure without global coordination, while at the same time obtaining
a meaningful performance improvement.

4.2 Architecture

The architecture that supports the operation of the approach described above, is depicted in Fig. 7. Notice that
it relies in an additional layer which is located below a pure eager push gossip protocol. This layer, called the
Payload Scheduler, selects when to transmit the message payload (by using a combination of eager push and lazy
push) in a transparent manner for the gossip protocol above. The Payload Scheduler layer can be decomposed into
three separate components, also depicted in Fig. 7:

Lazy Point-to-Point The lazy point-to-point module is in charge of intercepting the interaction between the gos-
sip layer above and the transport protocol below. It queries the Transmission Strategy module to decide
whether to send the payload immediately (in the case, the exchange is performed in a pure eager push mode)
or to delay the payload transmission until a request is received. As we will later describe, this module is
also in charge of generating and replying to payload requests.

Transmission Strategy The Transmission Strategy module is the core component of the Payload Scheduler. It
defines the criteria that is used to defer payload transmission at the sender and, at the receiver, when to
request a specific payload transmission (e.g. when to trigger lazy push requests by the receiver). Note that
different strategies may be implemented, according to the efficiency criteria is targeted for optimization.
Notice that the goal of each strategy is to generate a combined protocol (push gossip plus scheduler) that
approximates the behavior of a structured multicast approach.
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Algorithm 2: Simple push gossip-based broadcast protocol
Data:

K //known messages

1: initially
2: K←− /0

3: proc MULTICAST(d) do
4: FORWARD(MKID(), d, 0)

5: proc FORWARD(i,d,r) do
6: DELIVER(d)
7: K ←− K∪{i}
8: if r < t do
9: P←− GETPEERS( f )
10: for each p ∈ P do
11: trigger L-Send (i,d,r +1,p)

12: upon L-RECEIVE (i, d, r, s) do
13: if i /∈ K then
14: FORWARD(i, d, r)

Oracle The last component of the Payload Scheduler is the Oracle. This component goal, similar to the Oracles
described previously in this chapter, is to offer additional information to nodes. This information can be
either configured in a static way or extracted, in run-time, concerning the performance data about the oper-
ation of the system, for instance, by computing round-trip delays between peers. This data is then used to
feed the Transmission Strategy module.

In the remainder of this section, we describe each component of the architecture in detail as well as the existing
interfaces among them.

4.2.1 Gossip Protocol Layer

As noted before, a fundamental aspect of this approach is that the Payload Scheduler can operate in a manner that
is transparent for the operation of a simple push gossip-based broadcast protocol. Therefore, it can be applied to
different gossip protocols, such as [3, 12, 7].

Nevertheless, for self containment, we depict in Algorithm 2 a typical push gossip protocol. This implementa-
tion assumes the availability of a peer sampling service [15] providing an uniform sample of f other nodes with the
GETPEERS( f ) primitive. It assumes also an unreliable point-to-point communication service, such that a message
m can be sent to a node p using the L-SEND(m, p) primitive. A message m is received from a peer p by handling
the L-RECEIVE(m, p) up-call. The gossip protocol maintains a set K of known messages (line 2), initially empty.
This set is used to detect and eliminate duplicates. In more detail, the algorithm works as follows.

• The application calls procedure MULTICAST(d) to multicast a message with payload d (line 3). This simply
generates an unique identifier and forwards it (line 4). The identifier chosen must be unique with high
probability, as conflicts will cause deliveries to be omitted. A simple way to implement this is to generate a
random bit-string with sufficient length.

• Received messages are processed in a similar manner (line 12), with the difference that it is necessary to
check for, and discard, duplicates using the set of known identifiers K (line 13) before proceeding.
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Algorithm 3: Point-to-point communication
Data:

C[ ] //cached data
R //known messages

1: initially
2: ∀i : C[i]←−⊥
3: R←− /0

4: Task 1:
5: proc L-SEND(i,d,r,p) do
6: if EAGER?(i,d,r,p) then
7: Send(MSG(i,d,r,p))
8: else
9: C[i]←− (d,r)
10: Send(IHAVE(i),p)

11: upon Receive(IHAVE(i),p) do
12: if i /∈ R then
13: QUEUE(i,s)

14: upon Receive(MSG(i,d,r),s) do
15: if i /∈ R then
15: R←− R∪{i}
16: CLEAR(i)
17: trigger L-RECEIVE(i,d,r,s)

18: upon Receive (IWANT(i),s) do
19: (d,r)←−C[i]
20: Send(MSG(i,d,r),p)

21: Task 2:
22: forever do
23: (i,s)←− SCHEDULENEXT()
24: Send(IWANT(i),s)

• The forwarding procedure FORWARD(i,d,r) (line 5) uses the message identifier i, the payload d and the
number of times, or rounds, the message has already been relayed r, which is initially 1. It starts by deliv-
ering the payload locally using the DELIVER(d) up-call. Then the message identifier is added to the set of
previously known messages K (line 7). This avoids multiple deliveries, as described before. Actual forward-
ing occurs only if the message has been forwarded less than t times (line 8) [12] and consists in querying
the peer sampling service to obtain a set of f target nodes and then sending the message, as in lines 9 and 11.
Constants t and f are the usual gossip configuration parameters [13].

For simplicity, we do not show how identifiers are removed from set K, preventing it from growing indefinitely.
This problem has been studied before, and efficient solutions exist ensuring with high probability that no active
messages are prematurely garbage collected [3, 12].

4.2.2 Payload Scheduler Layer

The Lazy Point-to-Point module is the entry point to the Payload Scheduler. It controls the transmission of message
payload using a simple negative acknowledgment mechanism. The policy used for each individual message is
obtained from the Transmission Strategy module using a pair of primitives:

• EAGER?(i,d,r, p) is used to determine if payload d for message with identification i on round r should be
immediately sent to peer p. Note that if the method always returns true the protocol operates as a pure
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eager push protocol. Otherwise, if the method always returns false, the protocol operates as a pure lazy push
protocol.

• (i,s) = SCHEDULENEXT() blocks until it is the time for some message i to be requested from a source s.
From the correctness point of view, any scheduling policy is safe, and will maintain all gossip protocols
properties, as long as it eventually schedules all lazy requests that have been queued.

The Lazy Point-to-Point module also informs the Transmission Strategy of known sources, for each message
and also, when payload has been received using the following primitives:

• QUEUE(i,s) queues a message identifier i to be requested from source node s. The Transmission Strategy
module must keep an internal queue of known sources for each message identifier, and eventually schedule
them, unless payload is received first.

• CLEAR(i) clears all requests on message i. Note also that a queue eventually clears itself as requests on all
known sources for a given message identifier i are scheduled.

The Lazy Point-to-Point module is depicted in Algorithm 3. It is based on two separate tasks. Task 1 is respon-
sible for processing transmission requests from the gossip layer and message deliveries from the transport layer.
Task 2 runs in background, and performs requests for messages that are known to exist (due to the reception of
IHAVE messages), but whose payload has not yet been received. Furthermore, the module maintains the following
data structures: a set R of messages whose payload has been received and; a map C, holding the payload and round
number for the message (if known).

This module operates as follows: When a message is sent (line 5), the Transmission Strategy module is queried
to test if the message should be immediately sent (line 7). If not, an advertisement without the payload is sent
instead (line 10). Upon receiving a message advertisement for an unknown message, the Transmission Strategy
module is notified (line 13). Upon receiving full message payload, the strategy module is informed (line 16) and
the message is also handed over to the gossip layer (line 17). Finally, when a node receives a request (line 18) it
looks it up in the cache and transmits the payload (line 20). Note that a retransmission request can only be received
as a consequence of a previous advertisement and thus the message is guaranteed to be known and stored locally.

Task 2 executes the following loop. The Transmission Strategy module is invoked to select a message to be
requested and a node to request the message from (pair (i,s) in line 24). This invocation blocks until a request is
scheduled to be sent by the Transmission Strategy module. A request is then sent (line 25).

For simplicity, we again do not show how cached identifiers and payloads are removed from C and R, preventing
them from growing indefinitely. This is however similar to the management of set K, discussed in the previous
section, and thus the same techniques may be applied.

Finally, the goal of the Oracle module is to measure relevant performance metrics of the participant peers and to
make this information available to the Transmission Strategy in an abstract manner. The exported interface of this
module is simply composed by the METRIC(p) method, that returns the current metric value for a given peer p.
This metric is used by the Transmission Strategy to select whether to immediately schedule an eager transmission
or when to request lazy push transmissions from each source. Note that, the Oracle module may be required
to exchange messages with its peers (for instance, to measure round trip delays). However, this communication
does not affect the dissemination process and moreover, for optimization, can be piggy-backed in regular gossip
messages.

In the following section we discuss different implementations of the Transmission Strategy and of Oracle mod-
ules, which aim at achieving different emergent dissemination structures.
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4.3 Strategies and Oracles

The definition of a Transmission Strategy has two main objectives: i) Avoid as much as possible redundant
transmissions of the same payload to any given target node; ii) Decrease the global latency for message dissemina-
tion and delivery. These goals are however conflicting. The first goal can be achieved by using a lazy push strategy
in all peer exchanges. Since nodes only gossip IHAVE messages, the recipient can request the payload only once.
Unfortunately, each lazy push exchange adds one additional round trip to the final delivery latency. On the other
hand, a pure eager push strategy minimizes latency at the cost of generating a significant amount of redundancy.

The key to obtaining a better latency/bandwidth trade off in applying a clever and decentralized strategy to
select which nodes (and therefore, links) should be preferred. To help the reader in assessing the goal of strategies,
we start by describing a couple of strategies that do not take advantage of knowledge about the environment, which
can also be used as a baseline for evaluating the benefits of more complex strategies.

4.3.1 Strategies

Flat The flat strategy is defined as EAGER?(i,d,r, p) returning true with some probability π or false with proba-
bility 1−π . When π equal to 1, this strategy implements a fully eager push gossip. On the other hand, with
π equal to 0, it provides a fully pure lazy push gossip. with π values between 0 and 1, it provides different
latency/bandwidth trade offs, as a different share of gossip messages are handled in a lazy fashion.

When a lazy strategy is used (and IHAVE messages are sent), we need also to consider how retransmis-
sions are scheduled by receivers within the SCHEDULENEXT() procedure. In the Flat strategy, the first
retransmission request is scheduled immediately when queued, which means that an IWANT message is
issued immediately upon receiving an IHAVE advertisement. Further requests are done periodically every
T , while additional sources are known. Notice that, this is required to mask the failure of the node which
sent the first received IHAVE advertisement.

The value of T is an estimate of maximum end-to-end latency. This avoids issuing explicit transmission
requests until all eager transmissions have been performed, thus optimizing bandwidth. Note that, unless
there is a network omission or an extreme transmission delay, there is usually no need to issue a second
request. Thus the value of T has no practical impact in the final average latency, and can be set using only
an approximation to the real end-to-end latency.

Although the T value is based only on the (current) end-to-end latency, the reader should notice that, as
stated before, this transmission strategy logic has a pure probabilistic nature, as it does not rely in any
knowledge about the execution environment (e.g. the transmission strategy does not rely in information
provided by any Oracle).

Time-To-Live (TTL) This strategy uses eager push until some gossip round u and is thus defined as EAGER?(i,d,r, p)
returning true if, and only if, r < u. When u > t, this strategy defaults to a simple lazy push gossip.
With u = 0, it provides pure lazy push gossip. With a u value between 0 and t, it provides different
latency/bandwidth trade offs, as it results, similar to the previous strategy, in a different share of gossip
messages being handled in a lazy fashion. SCHEDULEDNEXT() is defined exactly as in the Flat strategy.

Notice that this strategy is intuitively useful: During the first rounds, the likelihood of a node being targeted
by more than one copy of the payload is small and thus there is no point in using lazy push. Moreover, if the
supporting unstructured overlay network presents a low clustering coefficient, the usefulness of this strategy
is increased, as it will lower the number of redundant peers selected for gossip in the initial dissemination
rounds.
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Radius This strategy is defined as EAGER?(i,d,r, p) returning true if, and only if, METRIC(p) < ρ , for a given
peer p, has a lower value than a given constant radius ρ . As described before, METRIC(p) is provided
by an Oracle. module for node p. SCHEDULEDNEXT() delays the first retransmission by some time T0,
which is an estimate of the latency to nodes within radius ρ for the given metric. Further retransmissions
are scheduled periodically with period T , as in the Flat strategy. However, if multiple sources are known,
the nearest neighbor (according to the Oracle) is selected for requesting the payload.

This follows the intuition of gossiping first with close nodes to minimize hop latency. The expected emergent
structure should approximate a mesh structure, with most of payload being carried by links between close
neighboring nodes.

Ranked This strategy aims at achieving a hubs-and-spokes structure by selecting a set of best nodes to serve
as hubs, bearing most of the load. Therefore, at some node q, EAGER?(i,d,r, p) returns true if, and only
if, either q or p are considered to be best nodes, meaning that eager push is used whenever a best node
is involved. In such a way, more powerful nodes will have an increased probability to receive payload
messages through eager push, as they only rely in this transmission mode to forward the message to all their
selected peers. SCHEDULEDNEXT() is defined exactly as in the Flat strategy.

Although some nodes can be explicitly configured as best nodes, for instance, by an Internet Service Provider
(ISP) that wants to improve performance to local users, a ranking can also be computed using local Oracles
and a gossip based sorting protocol [39]. As shown later, this is greatly eased by the fact that the protocol
still works even if ranking is approximate.

4.3.2 Oracles

In this section we provide a short description of two simple Oracles, which are used in the evaluation scheme (we
will present experimental work further ahead in Sect. 4.4). Notice that, the implementation of these Oracles is
orthogonal to the design of the architecture.

Other, and more complex, strategies may require different types of Oracles. Moreover, an Oracle may com-
pute more complex metrics, for instance, that combine in some clever way more than one performance metric.
These performance metrics can be both network efficiency metrics, such as latency, but also application efficiency
metrics, such as content similarity in file sharing applications.

Latency Oracle Measures the latency to all neighbor nodes. Real-time monitoring of latency has been addressed
a number of times, in fact, every TCP/IP connection implicitly estimates round-trip time to perform conges-
tion control [40]. This estimate can be retrieved by applications and used for other purposes.

Distance Oracle Measures geographical distance to all neighbor nodes. This is useful mostly for demonstration
purposes, as it allows to plot network usage graphs such that, the resulting emergent structure, is under-
standable by the reader. Otherwise, it is not useful in optimizing network parameters.

4.4 Performance

In this section we show performance values for the gossip optimization protocol. Unlike the simulation setting
used in Sect. 3.4, here we use an experimental setting based on emulation.

4.4.1 Network Emulation

Experimental evaluation of the protocol for building emergent structures by optimizing gossip, was conducted
using the ModelNet large-scale emulation infrastructure [41] with a realistic network model generated by Inet-
3.0 [37]. In detail, ModelNet allows a large number of virtual nodes running unmodified programs to be configured
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in a smaller number of physical nodes in a LAN. Traffic is routed through a set of emulator nodes thus applying
delay, bandwidth, and loss as specified in the network model. Inet-3.0 generates realistic Autonomous System
level network topologies using a transit-stub model.

ModelNet was deployed in a cluster of 5 workstations connected by switched 100Mbps Ethernet. Each work-
station has a 2.4GHz Intel Celeron CPU, 512MB RAM, and a RealTek Ethernet controller. When hosting virtual
nodes, they run Linux kernel 2.6.14 and IBM Java2 1.5 runtime. When running as an emulator, FreeBSD 4.11 is
used.

The network model is generated using Inet-3.0 default of 3037 network nodes. Link latency is assigned by
ModelNet according to pseudo-geographical distance. Client nodes are assigned to distinct stub nodes, also with
the default 1 ms client-stub latency. A typical network graph has the following properties: average hop distance
between client nodes is 5.54, with 74.28% of nodes within 5 and 6 hops; average end-to-end latency of 49.83 ms,
with 50% of nodes within 39 ms and 60 ms.

4.4.2 Implementation and Configuration

The protocol was implemented by modifying an open source and lightweight implementation of the NeEM pro-
tocol [7] that uses the java.nio API for scalability and performance [42]. Briefly, NeEM uses TCP/IP connections
between nodes to avoid network congestion. When a connection blocks, messages are buffered in user space,
which then uses a custom purging strategy to improve reliability. The result is a virtual connection-less layer that
provides improved guarantees for gossiping.

This implementation was selected as NeEM 0.5 already supports eager and lazy push, although the later is
selected only based on a message size and in a round value threshold. The change required was to remove the
hard-coded push strategy and insert the scheduler layer. Message identifiers are probabilistically unique 128 bit
strings.

The protocol was configured with a gossip fanout of 11 and an overlay degree of 15. With 200 nodes, these
correspond to a probability 0.995 of atomic delivery with 1% messages dropped, and a probability of 0.999 of
keeping the overlay connected when 15% of nodes fail [13]. A retransmission period of 400 ms was used, which
is the minimal value that results in approximately 1 payload received by each destination when using a fully lazy
push strategy.

4.4.3 Traffic and Measurements

During each experiment, 400 messages are multicast, each carrying 256 bytes of application level payload. To
each of them, a NeEM header of 24 bytes is added, besides TCP/IP overhead. Messages are multicast by virtual
nodes in a round-robin fashion, with an uniform random interval with 500 ms average. All messages multicast
and delivered are logged for later processing. Namely, end-to-end latency can be measured when source and
destination share the same physical node, and thus a common clock5. Payload transmissions on each link are also
recorded separately.

Results presented in the following section used 25 virtual nodes on each workstation, thus obtaining 100 virtual
nodes. The reason for this limitation is that an epidemic multicast protocol produces a bursty load, in particular
when using eager push gossip: Network and CPU load occurs only instants after each message is multicast. Using
a larger number of virtual nodes was observed to induce additional latency which would falsify results. The
configurations that result in lower bandwidth consumption, which are the key results and goals of this approach,
were also simulated with 200 virtual nodes.

5We do not present such results in this chapter however, the interested reader can refer to [43] for more information.
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4.4.4 Statistics

Consider the following statistics of each experiment with 100 virtual nodes using an eager push strategy: 40000
messages delivered, 440000 individual packets transmitted. This amounts to 2200 Kpkts/s and thus approximately
6 MBps. As the overlay evolves, TCP/IP connections are created and tear down. During each run, approximately
550 simultaneous and 15000 different connections are used. The experiments presented in the next section, when
automated, take almost 7 hours to run. The total amount of resulting logs is 1Gb, that has then to be processed and
rendered in plots.

Special care was taken to consider variance of each measure taken. When in the following section we affirm that
a performance difference is relevant, this was confirmed by checking that confidence intervals with 95% certainty
do not intersect. In fact, the large number of samples used are sufficient to make such intervals very narrow.

4.4.5 Experimental Results

To strengthen the intuition behind the approach, we depict the impact of the described strategies with the Oracle
that considers pseudo-geographical position of nodes, as generated by Inet-3.0. Although this cannot be used to
assess the performance of the protocol, as geometrical distance does not directly map to end-to-end distance, it
allows the resulting emergent structure to be plotted and understood.

Figures 8-10 shows the result of running 100 node configurations with different strategies and then selecting
the top 5% connections with highest throughput. The size of each red circle is proportional to the amount of
payload transmitted by the node. Note that each connection is used for a brief period of time, as the membership
management algorithm periodically shuffles peers with neighbors. This means that connections shown may have
not existed simultaneously.

As a baseline, Fig. 8 shows an eager push configuration, where no structure is apparent. A confirmation of
this is given by the fact that the top 5% connections account for only 7% of all traffic, i.e. payload transmissions
are evenly spread across all connections. In sharp contrast, Fig. 9 shows an obvious emergent mesh structure
as a result of the Radius strategy, in which the 5% connections account for 37% of all payload transmissions.
Finally, Fig. 10 shows a sub-set of nodes emerging as super-nodes, accounting for a large share of links and also
transmitting a higher number of payloads. Again, the emergent structure is confirmed by the fact that 5% of the
connections account for 30% of total payloads transmitted.

5 Discussion and Future Directions

In this chapter we discussed how to add some structure to unstructured overlay networks. We have identified
two distinct techniques that can be used for this end, namely: a technique based on optimizing the overlay and; a
technique based on optimizing gossip itself. These techniques can be applied together as each of them operates
at distinct levels in the typical architecture of gossip protocols. We have described in some detail one protocol
for each of these techniques. The first protocol illustrates how to control the communication patterns to adapt the
unstructured topology of the overlay, into a more structured and efficient infrastructure for peer-to-peer applica-
tions and protocols. The second protocol illustrates how the control of communication modes among peers can
be used to create emergent communication structures in unstructured overlay networks. Moreover, we showed
that by exploiting these emergent patterns, one can lower the typical communication overhead of gossip protocols,
by applying according to different strategies, a combination of eager push and lazy push when gossiping with
neighbors.

As future directions for research, we identify the following open issues that are raised when adding structure to
unstructured overlay networks:

Unstructured overlay networks are a promising approach to develop high scale and highly resilient monitoring
systems. Notice that one can map on top of the overlay links, monitoring relations. Therefore, one ensures that
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Figure 8. Flat (7% of traffic)

all components in the system (which are mapped on nodes) are constantly monitored by a given number of other
components, and that every component shares the monitoring load. Moreover, adapting the overlay structure can
be useful to promote efficient methods to disseminate monitoring information.

Location algorithms for unstructured overlay networks present a high overhead, specially compared with lo-
cation algorithms for structured approaches such as DHTs. Usually, these algorithms degenerate in some kind
of limited flooding in the overlay which presents a high communication overhead. On the other hand, unlike
structured approaches, unstructured overlay networks can support more complex search semantics (as they do not
operate based on hash keys) and can better tolerate churn scenarios. One can try to bias the topology of unstruc-
tured overlay networks to support more efficient, reliable and rich semantics resource location algorithms and
protocols.

Finally, given that the methodologies illustrated in this chapter operate at distinct architectural levels, a promis-
ing direction in the peer-to-peer research field is to find efficient ways of combine both methodologies.
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Figure 9. Radius (37% of traffic)
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