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Abstract

Recently there has been an effort to build scalable and reliable application-level multicast solutions that combine
the resilience of pure gossip-based with the efficiency of tree-based schemes. However, such solutions assume
that participants have unlimited resources, for instance, that they can send an unbounded number of messages
to mask network omissions. Such scenario is not realistic, specially for streaming protocols, where messages
can be transmitted at a very high rate and have a small temporal validity.

In this paper, we propose RASM, a scalable distributed protocol for application-level multicast. Our protocol
is based on the combination of gossip-based and tree-based multicast schemes. Unlike previous approaches,
which strive to combine gossip-based and tree-based schemes, our solution takes into consideration the reliabil-
ity of components: nodes and communication links can fail, unexpectedly, ceasing their operation and dropping
messages, respectively. Experimental results show that our scheme offers better reliability than previous solu-
tions with low overhead.
Keywords: Peer-to-Peer overlays, Streaming, Reliability
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Abstract

Recently there has been an effort to build scalable and reliable application-level multicast solutions that combine
the resilience of pure gossip-based with the efficiency of tree-based schemes. However, such solutions assume
that participants have unlimited resources, for instance, that they can send an unbounded number of messages to
mask network omissions. Such scenario is not realistic, specially for streaming protocols, where messages can be
transmitted at a very high rate and have a small temporal validity.

In this paper, we propose RASM, a scalable distributed protocol for application-level multicast. Our protocol is
based on the combination of gossip-based and tree-based multicast schemes. Unlike previous approaches, which strive
to combine gossip-based and tree-based schemes, our solution takes into consideration the reliability of components:
nodes and communication links can fail, unexpectedly, ceasing their operation and dropping messages, respectively.
Experimental results show that our scheme offers better reliability than previous solutions with low overhead.

1 Introduction

Application-level multicast solutions, that operate on top of peer-to-peer overlay networks, have gained sig-
nificant attention from the research community in the past years. These solutions appear as an alternative to
IP multicast that faces several technical and commercial deployment issues. These solutions have been used to
support the operation of several Internet services, such as file sharing, resource location, audio/video streaming,
among others.

There have been two main approaches to develop such multicast solutions. The first relies on epidemic gossip-
based protocols, which disseminate messages to random peers [1, 2, 3]. The second relies on some sort of span-
ning tree structure formed by peers, which is used to route messages deterministically [4, 5, 6, 7, 8, 9, 10, 11].
Gossip-based protocols are an interesting approach because they are simple and can distribute the load among all
participants in the system. Their natural redundancy is able to mask both node and link failures, making these
approaches highly resilient. Unfortunately, the natural redundancy also induces a high message overhead.

On the other hand, tree-based protocols are more efficient, as they rely on a spanning tree structure to determin-
istically route messages among peers, without the transmission of redundant messages. Moreover, this approach
makes it possible to take into consideration the heterogeneity of participants (for instance, by putting more re-
liable nodes closer to the root of the spanning tree). Unfortunately, tree-based approaches introduce additional
complexity, as they require the construction and maintenance of a spanning tree.

∗This research was jointly funded by project “Redico” (PTDC/EIA/71752/2006), the Swiss National Science Foundation, in the
context of Project number 200021-108191, and the European Science Foundation (ESF) under the ”Middleware for Network Eccentric
and Mobile Applications” (MiNEMA) activity.
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In summary, the tradeoff between these two approaches is basically scalability and resiliency vs. adaptiveness
and efficiency.

1.1 Combining Approaches

Recently, there has been several efforts to combine both tree-based and gossip-based approaches [12, 13, 14].
With such an approach, one can build and maintain a low-cost spanning tree for efficient multicast, and rely on
the remaining links of the network for fault-tolerance. Unfortunately, existing solutions, which combine tree-based
and gossip-based approaches, do not take into account the reliability of nodes or links. Moreover, these solutions
typically assume that participants have unlimited resources, for instance, that they can send an unbounded number
of messages to mask network omissions.

This paper proposes a Reliable Algorithm for Scalable Multicast (or simply RASM), a multicast solution to serve
peer-to-peer streaming applications. Our solution maximizes the multicast reliability in an unreliable environment
by combining tree-based and gossip-based approaches. In this context, we define reliability as the probability that
all nodes deliver a streamed packet. To do so, some determinism is added to traditional gossip solutions, in order
to select, at each node, a subset of its direct neighbors to gossip with. The closure of all neighbors, and links,
selected for gossip should, implicitly, define a tree-overlay that includes the most reliable paths in the system.

Our protocol is completely decentralized and aims at ensuring both low message and low computation overhead.
The low message overhead derives from the use of a tree overlay whereas the low computation overhead derives
from the use of a gossip based strategy. Furthermore, our solution can scale to a large number of simultaneous
participants, as it does not require global knowledge concerning the entire system to be maintained by each
participant. We do this by leveraging on a low cost unstructured overlay network, which can be built on top of a
peer sampling service based on partial views of the system [15, 3].

1.2 Roadmap

The rest of this paper is organized as follows. In Section 2, we introduce the system model and define the
problem that motivates our work. Section 3 describes the RASM protocol. Our solution is evaluated through
simulations in Section 4. Section 5 covers the related work and finally, Section 6 concludes the paper.

2 Model & Problem Statement

We consider an asynchronous distributed system composed of processes (nodes) that communicate by mes-
sage passing. Our model is probabilistic in the sense that nodes can crash and links can lose messages with
a certain probability. More formally, we model the system topology as a connected graph G = (Π,Λ), where
Π = {p1, p2, ..., pn} is a set of n processes and Λ = {l1, l2, ...} ⊆ Π × Π is a set of bidirectional communication
links1.

We assume that nodes can crash and later recover and links can suffer omission faults. Both process crash and
link message loss probabilities are modeled as a failure configuration C = (P1, P2, ..., Pn, L1, L2, ..., L|Λ|), where Pi

is the probability that process pi crashes during a computation step, and Lj is the probability that link lj loses a
message during a communication step.

For scalability, we take into account the limited memory of each node pi, by limiting the knowledge it keeps
about the system to knowledge about its direct neighbors, denoted Ni and to the links connecting it to these
neighbors, denoted LNi. We assume that knowing about an environment component (link or process) includes
knowing all its properties. That is, if a process pi knows a neighbor nk then, pi knows nk crash probability, noted
Pk. It, also, knows lk, the link relying pi to nk and its message loss probability Lk. Notice that this assumption is
realistic as each node is only required to maintain a small number of neighbors.

Intuitively, the main question addressed in this paper is: how to maximize the message multicast reliability,
in spite of unreliable processes and links and in spite of the limited knowledge about the system? More formally,
using our system model presented earlier, we can restate the problem we address in this paper as follows: given
the set of neighbors Ni and the set links connecting it to these neighbors LNi, how should process pi propagate

1This system view can be approximated by each process using, for instance, the results presented in [15].
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Figure 1. Streaming node architecture

a multicast packet in order to maximize the probability of having this multicast packet reach all processes, in an
efficient manner?

3 RASM

In this section, we describe RASM our novel multicast solution to support reliable streaming in large-scale
systems. We start by providing an overview of the system architecture in which RASM operates. Then we follow
with a brief description of the rationale for RASM. Finally, we detail the most relevant aspects of the protocol.

3.1 Overview

As shown in Figure 1, RASM might serve a top Streaming Application. In this case, the top Streaming Application
would be responsible for breaking the outgoing stream into a sequence of messages on the producer side, and for
assembling these messages back into an incoming stream on the consumer side. The Streaming Application then
relies on RASM to reliably multicast each stream packet. Our multicast solution is defined by two primitives:
multicast(m) to multicast a packet m and deliver(m) to deliver a packet m to a top streaming application. Each
RASM node maintains an up-to-date knowledge about its direct neighbors: N , and the links connecting it to
these neighbors: LN . This knowledge includes also the reliability of these components, which is provided by an
underlying layer: Neighborhood Approximation Service. The latter relies on Bayesian inference to approximate the
neighborhood of each process pi. Explaining about how neighborhood approximation actually works goes beyond
the scope of this paper and can be found in [15]. Finally, the Unreliable Link Layer allows each process pi to send
messages to its direct neighbors in a probabilistically best-effort manner.
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Algorithm 1 Tree Construction Algorithm executed by pi.
1: initialization:
2: provider ←− ∅
3: receivedMsgs ←− ∅
4: eagerPushPeers ←− Ni

5: procedure multicast(m)
6: mID ←− hash(m+myself)
7: call EagerPush (m, mID, 1, myself)
8: deliver(m)
9: receivedMsgs ←− receivedMsgs ∪ {(mID, myself,1)}

10: procedure EagerPush(m, mID, proba, Sender)
11: for all pj ∈ eagerPushPeers: pj &=Sender do
12: proba ← proba× [(1− Pi)× (1− Li,j)× (1− Pj)]
13: Send(Gossip, m, mID, proba, pi) to pj

14: upon Receive(Gossip,m, mID, proba, Sender) do
15: if & ∃ e ∈ receivedMsgs : e.mID = mID then
16: deliver(m)
17: receivedMsgs ←− receivedMsgs ∪ {(mID, Sender, proba)}
18: provider ←− Sender
19: eagerPushPeers ←− eagerPushPeers ∪ {Sender}
20: call EagerPush (m, mID, proba, Sender)
21: else
22: let (oldmID, oldSender, oldProba) ∈ receivedMsgs / oldmID = mID
23: if proba > oldProba then
24: receivedMsgs ←− receivedMsgs \ {(oldmID, oldSender, oldProba)}
25: receivedMsgs ←− receivedMsgs ∪ {(mID, Sender, proba)}
26: eagerPushPeers ←− eagerPushPeers ∪ {Sender}
27: eagerPushPeers ←− eagerPushPeers \ {oldSender}
28: provider ←− Sender
29: Send(Prune, pi) to oldSender
30: else
31: Send(Prune, pi) to Sender
32: eagerPushPeers ←− eagerPushPeers \ {Sender}

33: upon Receive(Prune, Sender) do
34: if provider.ID = Sender.ID then
35: Send(Repair, pi) to Sender
36: else
37: eagerPushPeers ←−

eagerPushPeers \ {Sender}

38: upon Receive(Repair, Sender) do
39: eagerPushPeers ←− eagerPushPeers ∪ {Sender}
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3.2 Rationale

Our protocol operates as any pure gossip protocol, in the sense that, in order to multicast a message, each node
gossips with a set of nodes. Our strategy follows a similar architecture to that of the Plumtree protocol [12] where
nodes gossip deterministically using a combination of eager and lazy push gossip. By doing so, Plumtree aims to
implicitly create a spanning tree overlay with the minimum latency through which multicast packets are routed.

Similarly to Plumtree, each node executing the algorithm, maintains a sub-set of its neighbors, named eager-
PushPeers, with which it uses an eager gossip. Unlike Plumtree, the selection of neighbors to be added to the
eagerPushPeers set ensures that the closure of links among those peers form the most reliable tree covering the
whole system.

Hereafter, we give an overview of the most relevant aspects of our protocol. That is, the following section focuses
on the definition of the eagerPushPeers set at each node. The reader can also refer to Algorithm 1 for additional
details.

3.3 Protocol Description

We describe our decentralized mechanism to build a spanning tree that attempts to use the most reliable paths
available in the underlying overlay network. Algorithm 1 depicts the RASM protocol. Before describing how
RASM builds a tree with the most reliable paths, we first need to introduce the notions of reachability probability
and reachability function. These notions are borrowed from a previous paper [15].

Reachability Probability The reachability function, noted R(), computes the probability to reach all processes
in some propagation tree T when a given message is propagated through T . We then define the probability returned
by R() as T ’s reachability probability. Equation 1 below presents the reachability function borrowed from [15]. In
this function, R is measuring the Reachability Probability of a tree T with n-1 links, where Pj denotes the crash
probability of node pj , Ppred(j) denotes the crash probability of the node preceding pj in T (denoted by pred(j)),
and Lj denotes the message loss probability of link lj connecting pred(j) to pj .

R(T ) =
n−1∏

j=1

[(1− Ppred(j))× (1− Lj)× (1− Pj)] (1)

As already mentioned, at each node, the eagerPushPeers set of a node represents a subset of its direct neighbors,
with which that node gossips stream packets. Therefore, the goal is to ensure that neighbors in this set are the
most reliable ones (both in terms of link and process failure probability).

The multicast of a packet m starts by having the stream source sending m to all its neighbors in its eager-
PushPeers set by calling the EagerPush() procedure (line 7) Initially, each eagerPushPeers set of a process pi,
is initialized with the set of its direct neighbors Ni (line 4). Thus, the multicast of the first stream packet m is
performed by a flooding mechanism, where each node sends m to all neighbors in its eagerPushPeers set.

Obviously, some nodes will receive duplicates of m. When a duplicate of a packet is received by a node pi

(line 21), this is an indication that several existing paths allow the node to receive stream packets sent from the
same stream source. In such a scenario, the goal is to select the path with the highest reachability probability and
to prune the remaining paths to avoid packets duplication. Implicitly this will generate a tree with the maximum
reachability probability. The information about the reachability probability of a path crossed by a packet m is
piggybacked to the stream packet itself. Indeed, when a node sends a message m to a neighbor is also sends
additional information representing the reachability probability of the path crossed by m so far.

This probability is computed iteratively at each overlay hop performed by the stream packet, using the prod-
uct depicted in the reachability function R. That is, each node pi sending message m to a node pj , computes
the reachability probability taking into account the reachability probability of the upstream path, its own crash
probability Pi, the crash probability of the target neighbor Pj , and the message loss probability of the link to that
neighbor Lj (line 12).

Thus, when a node pi receives a duplicate of the packet m from its neighbor pj , it compares the reachability
probability of the path crossed by m via pj and the reachability probability of other paths that also allow pi to
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receive m from a given predecessor node pk (line 23). When the reachability probability via pj is higher, pi keeps
pj as its stream packet provider, removing pk from its eagerPushPeers set and sending a Prune message to pk to
remove the path through this previous sender from the emergent spanning tree (line 29). Upon receiving a Prune
message, pk also removes pi from its eagerPushPeers set, hence pk will not propagate the following stream packets
to pi. This mechanism eventually and implicitly defines a spanning tree overlay that includes the most reliable
paths of the original peer-to-peer overlay network while avoiding message redundancy, i.e., imposing the minimum
message overhead.

Execution Example To illustrate our approach, Figure 2 depicts the operation of our algorithm in a simple
scenario. In this example, we assume that only links may be unreliable, while processes are assumed to be reliable.
Labels associated with each link in Figure 2 represent the link unreliability Li (the probability to lose a propagated
message). That is, links l1,2, l1,3 and l3,4 have a probability to lose a message routed through them of 0.2, whereas
link l1,4 has a probability to lose a message of 0.6 being therefore less reliable.

The multicast starts by having the source node (node p1) sending a multicast message m to all nodes in its
eagerPushPeers set (Figure 2 (a)). Initially, the eagerPushPeers set of p1 includes all its direct neighbors ({p2,
p3, p4}). To each neighbor, p1 sends with m the reliability of the path followed by m to reach that neighbor. For
example, to reach p4 directly from p1, m crosses a path of reliability 1− 0.6 = 0.4 considering the reliability of the
link between p1 and p4. Upon receiving m, process p3 will forward the message to all nodes in its eagerPushPeers
set except p1, i.e., p3 forwards m only to p4 (Figure 2 (b)). In addition, process p3 sends an adjusted reliability
of the path followed by m to reach p4 computed using function R. When receiving a duplicate of m from p3, p4

compares the reliability of the path crossed by m from p3: 0.642; and the reliability of the path through which m
was previously sent: 0.4. To select the path through p3, p4 sends a Prune message to the previous sender of m:
p1 (Figure 2 (c)). When receiving this Prune message, p1 removes p4 from its eagerPushPeers set. The resulting
tree defined by the eagerPushPeers sets is depicted in Figure 2 (d); as the reader can notice, the resulting spanning
tree includes the most reliable links.

Disconnection Risk Note that in the previous example, p4 also sends m to p3 upon receiving it for the first
time. However, p3 is not interested by this alternative path to receive multicast packets3. This scenario represents
a disconnection risk as p3 may discard p4 from its eagerPushPeers set while this latter counts on p3 to receive
multicast messages. To overcome this problem, we define an efficient and simple mechanism based on a type of
messages named Repair. For this mechanism, we assume that each process pi defines as provider the neighbor in
its eagerPushPeers set that is supposed to provide pi with multicast packets (its upstream neighbor). When pi

receives a multicast message m for the first time it defines the neighbor that sent m as provider. When pi receives
a duplicate of m through a more reliable path, it then switches the provider to the neighbor that sent the duplicate
of m. The idea of this simple mechanism is that when pi receives a Prune message from its provider, pi simply
replies with a Repair message to reconnect itself to that provider. In its turn, pi’s provider, upon receiving the
Repair message from pi, adds it to its eagerPushPeers set again. Preliminary experimental results have shown
that this simple mechanism improves the spanning tree reliability imposing a low overhead.

Resource Optimization The solution described before may be further improved by a simple well-known mech-
anism: message redundancy. However, applying a strategy based on a blind message redundancy to our tree will
contradict one of the main goals of this paper: efficiency. In addition, P2P networks are by nature limited in re-
sources. Hence applying a blind message redundancy technique under these constraints is undesirable. As proposed
in [4], resources constrains (e.g., CPU, memory and bandwidth) could be addressed by relying in a fixed quota
of messages at the disposal of each node to diffuse a single multicast message. That quota expresses the capacity
of each node to process messages and also its available outgoing bandwidth. Formally, the available resource is
modeled as Q = (q1, q2, ..., qn), the set of quotas associated to nodes in the system; qi is the individual quota of
messages at the disposal of process pi to forward a single multicast message. For the correctness of our algorithm,
we assume that qi is at least equal to Ni, the direct neighbors of process pi. We argue that this assumption is
realistic. Indeed, in a peer-to-peer system, we can consider that a link between two nodes is an overlay link formed

2This value is given by (1− 0.2) ∗ (1− 0.2) = 0.64.
3Notice that p3 is not interested in receiving multicast messages via p4 because that path does not offers the better available

reliability.
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Figure 2. Execution example

a as a result of a peering relationship between those nodes. Such a peering relationship is established using a boot-
strapping mechanism performed by an arrival node trying to select existing nodes with whom such relationships
can be established. In our case, such a capability would reflect the available quota of messages. Moreover, by
leveraging on the work proposed in [3] one can easily limit the maximum number of neighbors maintained by each
node, while ensuring the overall connectivity of the resulting peer-to-peer unstructured overlay network.

In this section, we propose a resource optimization mechanism which enabled us to improve the reliability of
each packet multicast, optimizing the use of available message quota at each node, by transmitting more than a
single message to a single neighbor in the eagerPushPeers set, allowing to mask potential link omissions.

To take maximum advantage of the available message quota at each process, we slightly change our solution
to compute a quota distribution before gossiping each stream packet. The idea is that. before forwarding a new
message m, a process pi will first optimize the distribution of its quota qi. Such a distribution defines how many
retransmissions should be sent through each link in order to maximize the probability of reaching all neighbors in
the eagerPushPeers set. To measure the benefit of the quota optimization, we define a new version of function R()
(Equation 1) named R′ (Equation 2) that measures the impact of message retransmissions assigned to each link
of a tree on that Reachability Probability.

R′(T, !m) =
|!m|∏

j=1

1− [1− (1− Ppred(j))× (1− Lj)× (1− Pj)]!m[j] (2)

Based on the message redundancy definition at links of a tree T, function R′ (Equation 2) returns the reachability
probability of T , where the number of times a multicast message is forwarded in each link of the tree is represented
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by vector !m.4
The quota optimization works iteratively starting with a minimal distribution allocating one message to each

receiver of the eagerPushPeers set. The remaining quota is then allocated one by one until it is exhausted.
Each additional message transmission is allocated, by our optimization mechanism, to the outgoing link in order

to maximize the gain in probability to reach all receivers computed using the R′ function (equation 2). Considering
the tree Ti composed by a sender process pi and a set of receiver nodes (⊆ pi eagerPushPeers set) and a vector
!mi defining the distribution qi (pi’s quota). The reachability probability given by R(Ti, !mi) corresponds to the
maximum probability to reach all the receivers of pi given the crash probability Pi, the receivers crash probability,
loss probability for the relevant links, and available quota qi.

4 Evaluation

In order to evaluate the benefits of RASM, we have implemented a prototype of the protocol in the Sinalgo
simulator.5 RASM is compared to Plumtree [12], which is also implemented in Sinalgo and executed in the same
scenarios as RASM. Plumtree [12] also combines eager and lazy push gossip strategies on top of an overlay network,
in such a way that links where eager push is used, implicitly define a spanning tree with the minimum latency. The
lazy push gossip approach is used on the remaining links of the overlay to handle failures and to provide support
for fast tree repair. The goal of the protocol is to achieve reliable broadcast with a lower message overhead without
hampering the latency of the system.

To compare RASM with Plumtree, we performed experiments in a network composed of 100 nodes organized
in random topologies. We have varied the node degree in experiments from a degree of 2 (equivalent to a ring
topology) to 20. Overlay links are symmetric. To avoid regular network configurations, we introduced 20% of
nodes to which we call hubs. A hub is a reliable node (where Phub= 0). Additionally, links that connect a hub to
any other node are almost fully reliable, i.e., we set the message loss probability for these links to 10−4.

We have performed experiments in two distinct scenarios. In the first scenario, no resource optimization is
employed and only the spanning tree is constructed by taking into consideration the reliability of nodes and links.
In the second scenario, we introduce the resource optimization mechanism, to optimize the use of available quotas
of messages in both protocols. This allows to show the benefits extracted from each of the two complementary
techniques and also from their combination.

4.1 RASM Benefit

Without Resource Optimization

Our goal is to evaluate the reliability of spanning trees implicitly built by Plumtree and RASM. We express
the reliability of these spanning trees using the reachability probability as defined in Equation 1 (Section 3.3).
Therefore, we have disabled the resource optimization described in Section 3. In Figure 3 (a), (b) and (c), we
respectively assign an approximative message loss probability of link Li to 0 (reliable links), 2% and 5%. Each
curve represents an approximative process crash probability Pi: 0, 1%, 2%, and 5% respectively.

As shown, in Figure 3 (a) in a reliable environment (Li=0 and Pi=0), there is no difference between RASM
and Plumtree since both of them provide a 100% reliability. As soon as we inject unreliability to the environ-
ment configuration RASM achieves better reliability than Plumtree. Such a reliability difference vary with the
environment configuration. For the same process crash probability Pi, this difference increases as the message loss
probability Li increases. Contrary, for the same message loss probability Li, this difference decreases as the crash
probability Pi increases. Regarding the network connectivity, while Plumtree reliability remains almost constant,
whereas RASM reliability is able to increase as the network connectivity increases.

Indeed, as the node degree increases, the reliability of the spanning tree also increases. As the number of links
in the overlay increases, more links associated to hubs are available. Therefore, RASM, unlike Plumtree, is able to
leverage in such links to build a more resilient spanning tree.

4Consider that a tree T is composed of a set of links {l1, l2, ...}. The number of times a message m is retransmitted over link li is
denoted by !m[i]. Intuitively, this value should be at least 1.

5Available in: http://dcg.ethz.ch/projects/sinalgo.
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Figure 3. Plumtree vs RASM reliability without Resource Optimization

With Resource Optimization

Figure 4, shows the reliability provided by both Plumtree and RASM after the optimization of quota of messages
at the disposal of each process. Here we vary the environment configuration as in the previous experiments. As
explained in Section 3.3, we assume that the quota of messages for one packet diffusion at each process is equal
to its connectivity. This ensures that each process is able to send at least one message per stream packet to each
direct neighbor. By varying the network connectivity, we consequently vary the quota of messages. As we simulate
a regular topology such a connectivity is the same for all processes which allows us to interpret our results and
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better understand the behavior of our algorithm6.
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Figure 4. Plumtree vs RASM reliability after quota optimization

Figure 4 (a) shows the reliability provided by both Plumtree and RASM while assuming a reliable links, i.e.,
Li=0. In this configuration RASM and Plumtree offer almost the same reachability probability. Here, the number
of switches performed by RASM in order to improve the reliability is small since whenever a duplicated message
is received from a neighbor, the alternative new path used by this duplicate includes at least one additional node.
Consequently the reachability probability provided by a duplicated message is (most of the time) lower than the
one provided by the path used to disseminate the first received copy. Indeed, the reachability probability of

6Thus at each execution, all processes have the same quotas of messages to propagate a packet.
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the path used by the duplicated message takes into account at least one more process crash probability which
makes the decision of switch less frequent. Unless the previous path is fairly unreliable even counting only crash
probabilities (Pi) which explains the minor advantage of RASM over Plumtree. Regarding the network connectivity,
the reliability provided by both Plumtree and RASM, in this configuration decreases as the network connectivity
increases. When this latter is equals to 2 (the topology is a ring), the overlay trees of both approaches are similar
to a line in which a maximum of two individual quotas is unused (those of leaves). In this topology, almost all
individual quotas are used to send a packet through one link which improves considerably the reliability.

As shown in Figure 4 (c) & (b), as soon as we inject some measure of unreliability to links, RASM and Plumtree
act differently. This is due to their different overlay tree structures, that are built by taking into consideration
different aspects of the network configuration. In Plumtree, the behavior remains almost the same: the generated
tree has high degree in internal nodes dividing their quotas in several portions while losing the leaves quotas. This
effect increases as the network connectivity increases. Contrary, in RASM, the tree structure selects the most
reliable paths which are improved as the choice of links is larger, i.e., as the network connectivity increases.

4.2 RASM Cost

We now provide some results concerning the overhead imposed by our additional repair mechanism that ensures
the connectivity of the spanning tree, despite the need to perform adaptations to its topology, in order to increase
its reliability.

Figure 5 shows the percentage of REPAIR messages produced by our protocol. By percentage we refer to the
ratio of REPAIR messages in relation to all messages sent during the simulation. In a reliable environment (Li=0
and Pi=0; Figure 5 (a)) no switch are performed to select the most reliable paths to the source, thus no REPAIR
messages are required. As the ranges of the loss messages and crash probabilities get larger as the percentage of
REPAIR messages increases.

When the network connectivity is equal to two, few links are connecting the system nodes, thus the tree includes
almost all links in the system. In this case no switch is performed since no alternatives paths are available. As
soon as additional paths become available (e.g. when the network connectivity is above two), switches start to
be performed and consequently some REPAIR messages are sent. As the average network connectivity increases
the percentage of sent REPAIR messages decreases. Indeed, with a small network connectivity (e.g., network
connectivity=4), packets are initially diffused through a deep tree with most of the nodes connected to source
through a long path. In this case any component reliability can make the difference in the overall tree. As the
network connectivity increases the tree becomes shorter and closer to a star topology where most of the nodes are
directly connected to the source. Thus most of the nodes are already likely to rely on the most reliable path to
the source. Hence few switches allow to improve the tree reliability, which results in less REPAIR messages being
sent.

4.3 Rounds to build the tree

Figure 6 shows the number of rounds needed by both RASM and Plumtree to stabilize their trees. As described
before, our simulations are performed in rounds. In each round, each node forwards packets received for the first
time in the previous round to nodes in its eagerPushPeers (except to the node from which it received those packets).
New packets are diffused by the source each 50 rounds starting from the round 1. We then measure the number
of rounds required to ensure the convergence of our protocol. By convergence, we mean that the tree does not
change during a certain number of consecutive rounds. In our simulation, if the tree does not change during 100
consecutive rounds we assume that it has became stable and we capture the round in which it was changed for the
last time, being this the number of rounds required by our protocol to converge. Indeed, the number of rounds
needed to build a tree reflects the number of forward steps needed for this. As shown in Figure 6 the number of
rounds depends on the network connectivity, hence the number of forward steps required to reach all nodes. When
the network connectivity is low the number of required rounds is higher, which reflects the number of forward steps
needed to reach every node in the system. As the network connectivity increases the number of rounds needed to
converge decreases. This is the reason that explains the small number of steps that are required that for all nodes
to be reached and become part of the spanning tree. RASM is therefore able to build the spanning tree in only a
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Figure 5. The percentage of REPAIR messages imposed by RASM

few additional rounds when compared with Plumtree. This is due to the switch mechanism of RASM that ensures
the higher reliability of the resulting spanning tree.

5 Related Work

There exist several works that propose multicast solutions on top of overlay networks.
FloodTrail [16] is a resource location technique that, similar to our approach, builds a spanning tree on top

of an unstructured overlay. MON [17] also enables the embedding of a short-lived spanning tree on top of an
unstructured overlay. however, none of these works addresses the problem of fault tolerance nor the reliability of
the resulting spanning tree.
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Bayeux [11] and Scribe [18] are examples of protocols for application-level multicast that leverage in the routing
infrastructures of DHT’s. However, Bayeux required the nodes at the root of spanning trees to maintain global
information concerning all receivers which limits its scalability. On the other hand, although Scribe is fault-tolerant
and it provides a mechanism to handle root failures, it only provides best-effort guarantees and does not address
the issue of offering strong reliability.

GoCast [13], is a protocol that also embeds a spanning tree in an unstructured overlay network for efficient
message dissemination. GoCast can be seen as a complementary work to our own, as it main focus is on the
maintenance of a proximity-aware random overlay, while our work main focus is how to efficiently create and
maintain a highly reliable embedded spanning tree on top of the random overlay.

6 Conclusion and Future Work

In this paper we proposed RASM an algorithm for large-scale streaming that operates by implicitly defining
a spanning tree on top of a low cost peer-to-peer overlay network. Unlike previous works that propose efficient
multicast solutions on top of overlay networks, RASM is able to take into consideration constraints in the execution
environment namely in terms of physical properties of the nodes (processing capacity, memory, and available
bandwidth) but also the reliability of nodes and links that form the peer-to-peer network.

Experimental results presented in the paper show that the reliability of spanning trees produced by a prototype
of RASM is higher than spanning trees built without taking into consideration such environmental constraints.
Moreover, we have shown that the overhead imposed by our solution is not significant. RASM presents itself as a
promising way to develop reliable and scalable multicast and streaming solutions for the Internet.

As future work we will evaluate RASM in additional and richer settings, taking into consideration additional
metrics such as the global latency and reliability of the multicast protocol. Furthermore, we will explore additional
ways to leverage on the additional links that are available at the overlay network level to avoid scenarios in which
nodes, that own highly reliable links with their neighbors, become somewhat overloaded as a result of their links
having a higher probability of becoming part of the spanning tree constructed by RASM.
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